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Abstract 

This report describes NavyFOAM V1.0, a computational fluid dynamics (CFD) 
capability based on Reynolds-averaged Navier-Stokes equations (RANSE) aimed at 
predicting turbulent single- and two-phase flows around ship hulls. The CFD capability 
employs a finite-volume discretization that allows use of arbitrary polyhedral elements. The 
free surface is captured using a volume-fraction method capable of accurately resolving sharp 
interfaces. NavyFOAM has been developed using an open-source CFD software tool-kit 
(OpenFOAM) that draws heavily upon object-oriented programming. The numerical methods 
and the physical models in the original version of OpenFOAM have been upgraded in an 
effort to improve accuracy and robustness of numerical solutions. The details of NavyFOAM 
V1.0 including the numerical methods and the physical models are described in this report. 
NavyFOAM VI.0 is demonstrated for a number of flows including: underwater bodies, 
turbulent free surface flows around the DTMB 5415 model and the K.VLCC2 double-model. 
It is shown that the RANSE based approach can predict, with good accuracy, most of the 
salient features of the turbulent free-surface flows around the subject hulls including 
resistance, wave elevation, hull boundary layer and wake. 

Administrative Information 

The work described in this report was performed by the Computational 
Hydromechanics Division (Code 5700) of the Hydromechanics Department at the Naval 
Surface Warfare Center, Carderock Division (NSWCCD). This effort has been funded by the 
Department of Defense High Performance Computing Modernization Program (HPCMP) 
under the Computational Research and Engineering Acquisition Tools and Environments 
(CREATE) Ship's Hydrodynamics Project. 

Introduction 

In the past two decades, computational fluid dynamics (CFD) has been established as 
an indispensible tool for design and analysis in ship hydrodynamics. CFD has also 
significantly expanded its realm, covering a broad spectrum of applications including: 
resistance, powering, propulsion, maneuvering and seakeeping. The geometrical, physical 
and operational complexity involved in ship hydrodynamics applications has led to the 
addition of many features and functionalities in CFD codes. Furthermore, CFD is frequently 
called upon to tackle multi-disciplinary applications such as fluid-structure interaction and 
hydroacoustics applications that require coupling of CFD codes with other computational 
mechanics software. Thus, general-purpose CFD codes, in attempts to cater to these diverse 
needs, have become increasingly larger and more complex. Software complexity is a serious 
issue which many legacy CFD codes face today, negatively impacting their overall efficacy in 
terms of quality assurance, packaging, maintenance and extensions. 

The Department of Defense High Performance Computing Modernization Program 
(HPCMP) office, under the CREATE Ship's Hydrodynamics Project, has initiated an effort to 
develop a CFD capability aimed at high-fidelity, high-performance, predictions of 
hydrodynamic phenomena occurring around surface ships and submarines. The ultimate goal 
of the project is to develop a high-fidelity CFD capability that can drastically shorten the design 

I 



cycles of surface ships and submarines, by answering technical questions on various aspects of 
hydrodynamic performance of naval vessels at early design stages. 

To meet the top-level requirements of the program, it was considered imperative that the 
new CFD software be developed using modern software engineering practices. Among others, 
it was concluded that object-oriented programming (OOP) with properly designed data 
structure and code architecture is essential to facilitate development, quality assurance (QA), 
deployment (packaging/release), maintenance, and extension of the software. Thus, wc started 
with OpenFOAM (Weller et al.1), an open-source CFD software tool-kit written in C++ 
drawing heavily upon object-oriented programming (OOP). Efforts to develop a computational 
framework using OpenFOAM had started out earlier with propulsors the target applications 
(Kim et al."). The CREATE efforts have greatly benefited from our earlier works on turbulence 
modeling, discretization schemes and solution algorithms. As of today, the OpenFOAM-based 
computational framework comprises a suite of modified and newly written application (top- 
level) solvers for single- and multi-phase flows, utilities and physics libraries built around the 
OpenFOAM CFD tool-kit. We loosely refer to the computational framework as "NavyFOAM" 
in order to distinguish it from the standard OpenFOAM offering. 

NavyFOAM includes several top-level solvers, Table 1, aimed at ship hydrodynamics 
applications, sRansFOAM (single-phase, steady RANSE solver), ransFSFOAM (RANSE- 
based free-surface solver), and ransFSDyMFOAM (RANSE-based free-surface solver with 
moving/deforming mesh), to name a few. That one has to deal with a number of top-level 
solvers for different applications often surprises those who are used to the idea of developing 
a monolithic CFD solver that can do everything. The philosophy adopted in OpenFOAM 
eschews the monolithic approach. 

This report consists of a number of sections, including: 

• Technical description 
• User's Guide 
• Example Results 
• Utility Programs 
• Tutorials 

Technical Description gives an overview of the theoretical formulation and the 
numerical methods used in the RANSE solvers in NavyFOAM. 

User's Guide is intended to help users learn how to run the codes without delving into 
the details of the implementations. This chapter should be considered as an annex to 
OpenFOAM's User's Guide. Those who are interested only in running the top-level solvers 
provided in NavyFOAM should read this chapter and the Tutorials and can skip the other 
chapters if they want to. 

Example Results presents example problems run with NavyFOAM selected from 
various applications including surface ships and underwater bodies. 

Utility Programs is an appendix that describes the top-level applications newly added 
to facilitate post-processing of the CFD results obtained using NavyFOAM. 



Tutorials given in the appendices provide step-by-step instructions starting from 
setting up the case to running the NavyFOAM solvers to exporting the results for post- 
processing. 

Table 1. Examples of top-level RANS solvers built using the OpenFOAM toolkit for marine 
propulsor applications (GGI: grid-to-grid interpolation) 

Solver Features/Functionalities Applications 

sRansFoam 
Single-phase, steady, RANSE, flow solver in the 
inertial frame 

Underwater bodies (without 
free-surface effects) 

ransFSFoam 

Two-phase, unsteady, RANSE, flow solver in the 
inertial or rotating frame with GGI 

Surface ships with fixed 
sinkage and trim 
Propellers in open water 
with uniform inflow 

ransFSDyMFoan 
Two-phase, unsteady RANSE, flow solver in the 
inertial frame with dynamic mesh motion with GGI 

Surface ships with 
dynamic sinkage and trim 
prediction 
Propellers with non- 
uniform inflow 



Technical Description 

NavyFOAM employs a cell-centered finite-volume method based on a multi-dimensional 
linear reconstruction scheme that permits use of arbitrary polyhedral elements including 
quadrilateral, hexahedral, triangular, tetrahedral, pyramidal, prismatic, and hybrid meshes. The 
solution gradients at cell centers can be evaluated by applying the Green-Gauss theorem or by 
the least-square method. Spatial and temporal discretizations formally have up to second-order 
accuracy. The volume-fraction equation is solved using an implicit solver. The discretized 
governing equations can be solved using a choice of iterative linear solvers such as point-implicit 
Gauss-Seidel or algebraic multi-grid (AMG) methods. Velocity coupling to ensure mass 
conservation (continuity) is effected using a projection algorithm. The entire NavyFOAM solver 
suite can be run in parallel using domain decomposition and a public version of MPI (OpenMPI) 
for message passing. 

Governing Equations 

The governing equations adopted in NavyFOAM consist of the continuity (mass 
conservation) equation, momentum equations, turbulent transport equations, and a volume- 
fraction equation. Which equations are solved in a top-level solver depends on whether the flow 
is single-phase or multiphase. 

Single Phase Flow 

For single phase incompressible flow, the governing equations consist of the continuity 
equation, the momentum equation, and the turbulence transport equation(s). The continuity 
equation can be written in a differential form as: 

VV = Q (1) 

The momentum equation can be written as: 

|^ + V(rn = -VF + V-{^//(vK + VF7')} (2) 

where V is the velocity vector, P = — is the modified pressure, p is the hydrodynamic pressure, 
P 

p is the density, veff =v + v, is the effective viscosity, v is the kinematic viscosity, and r, is the 

turbulent eddy viscosity. 

Multiphase Flow 

In the volume of fluid (VOF) method, the governing equations for two-phase flow consist 
of the continuity equation, the momentum equation, the convection equation for volume fraction, 
and the turbulence transport equation(s). The continuity equation is given by 

VV=0 (3) 

The momentum equation is given by 



^P- + S7.(pVV) = -VP + v{Meff(vV + VVT)}+pg + (TKVr (4) 

where ' is the volume fraction, g is the gravitational acceleration vector, <J is the surface 

tension coefficient, and K is the interface curvature, neff = // + //, is the effective viscosity, // is 

the dynamic viscosity, and //, is the turbulent eddy viscosity. The density is calculated by 

P-YP\ +(|->')/7:> and tne dynamic viscosity by// = //(//,,/i2, y). The subscripts "1" and "2" 
refer to the two phases or fluids. The convective transport equation for volume-fraction is 

|^ + V.(Pr) = 0 (5) 

Turbulence Models 

NavyFOAM allows users to choose from the entire turbulence model suite available in 
OpenFOAM. NavyFOAM additionally offers a Wilcox's k-co turbulence model (Wilcox), a 
modified SST k-co model, and a custom version of Spalart and Allmaras" one-equation model. 
Wall models are implemented in these newly available turbulence models so that the models can 
be used with either a wall-resolving (y+ < 1) or a wall-skipping (y+ >30) mesh. 

Spatial and Temporal Discretization 

Gradient Schemes 

Gauss Integration. The gradient can be calculated using the Gauss theorem 

jV<pdSl= \ntpoT 6 

«, r. 

Assuming the gradient is constant in a cell, (6) can be approximated as 

V^*77nZ«V^ (7) 

where the subscript P denotes the cell center, | Qe | is the volume of the cell, and S, is the area 

vector of each face of the cell. 

Cell-Based Calculation. In a cell-based approach, the face-center value ' in (7) is 
calculated using the cell-center value of ^ in neighboring cells, as shown in Figure 1. This 
approach is used in OpenFOAM. 



Figure 1. Stencil in cell-based gradient calculation in two-dimensions 

Node-Based Calculation  In a node-based approach, the nodal value of <p (red circles in 
Figure 2) is First calculated using all neighboring cells of the node, then the face-center value (pt 

in (7) is calculated using nodal values. As a result, the stencil involved in the gradient calculation 
(all blue squares in Figure 2) is much larger than that in the cell-based approach. 

Figure 2. Stencil in node-based gradient calculation in two-dimensions 

Two types of node-based gradient calculations, i.e. the Pseudo-Laplacian-Wcighted- 
Averaging (PLWA) and the Inverse-Distance-Weighted-Averaging (IDWA) have been 
implemented in NavyFOAM. They differ in the way that the cell-centered volume field is 
interpolated to the node point field. More details are described later. 

Least Squares. The concept of least-squares calculation of gradients is easily illustrated 
in two-dimensions. There should be no difficulty to extend it to three-dimensions. Suppose we 
want to calculate the gradient of <p at the center of cell i, see Figure 3, the neighboring cells are k 
= 1,2, and 3. 



Figure 3. Stencil in least-squares gradient calculation in two-dimensions 

In a general form, let Nh be the total number of neighboring cells, the neighboring cell- 

center value of (p can be written as a Taylor expansion about the center of cell /'. 

<Pk =<Pi+{^<P),-^lk+sik for£= 1,..., Nh (8) 

where elk represents the higher-order errors. Defining a total error as the sum of weighted errors 

using 

*-£«?! (9) 
* i 

where wik is the weighting factor. Omitting the index / for brevity, Equation (8) can be written as 

or in the form of Cartesian components 

£k =<Pk~<P- 

<Px Axk 

<P> &yk 

JPz. _Azk_ 
forA-=l,..., Nh 

(10) 

Substituting (10) into (9) and setting 

BE    n    dE    n        ,   dE    n  = 0,    = 0,   and    = 0 
d<px d(py dcp. 

to minimize the total error, one has 



1 ' t< B                                                                 P 

ZW*(A**)2 £wt(Ax,Ay<) ^^(Ar^AzJ 
t»i *=i *=i 
N> Wj *» 

*-i <=i *=i 
N* Nh N„ 

Zwt(Ax4Az4) £wt(A.y,AzA) £w<(Az,)2 

*=i *=i * i 

-p) 

Zw*Av*(^* -p) 

-?) 
*=l 

(11) 

The solution to the liner system in (11) gives the gradient calculated in the least-squares sense. 

Convection Schemes 

In finite volume methods, the convection term can be calculated using the Gauss theorem 

jV-(V<p)dCl= \n(V<p)dr (12) 

The surface integration in (12) can be approximately calculated as 

\h{V(p)dY^{VS)((pf (13) 

The convection scheme determines how the face-center value q>f is calculated. The most widely 

referenced boundedness criterion using the normalized variable approach is Gaskell and Lau's 
Convection-Boundedness Criterion (CBC) (Gaskell & Lau4). 

Convection Boundedness Criterion (CBC). The concept of CBC is easily illustrated in 
one-dimension as shown in Figure 4, where D is the donor cell, U is the upstream cell, and A is 
the acceptor cell. 

u      ;      D     f 

Figure 4. Illustration of nodes and face in one-dimension 

Defining a normalized variable 

<P-<PV <p 
<PA-<PV 

we thus have 



VA-VV and 9A-9U , 

Based on the normalized variables, CBC states the following local boundedness criterion 

^-^z-1   for fee[0.1] 

Vt=V»        for fee [0,1] 

(14) 

The graphical representation of CBC is often shown in the normalized variable diagram (NVD) 
(Leonard ) of Figure 5. 

Figure 5. Normalized variable diagram (NVD) with CBC (the shaded region) 

In general, the normalized  face-center value can be written as a function of the 
normalized value of the donor cell 

<P, = /(fe) (15) 

Linear Schemes.  If the function/ in (15) is linear, the scheme is called a linear scheme. 
Examples of linear schemes include: 

Central differencing (CD) scheme 

-,      I-     1 

Upwind differencing (UD) scheme 

9, =9D 

Downwind differencing (DD) scheme 

9/ =1 

(16) 

(17) 

(18) 



Quadratic Upstream Interpolation for Convective Kinetics (QUICK) scheme 

~      3~     3 

Warming & Beam Second-Order Upwind (SOUD) scheme 

~      5~      1 

'    4  '     8 

The NVD of these schemes and the CBC region are shown in Figure 6. 

UD 

(19) 

(20) 

Figure 6. NVD of linear schemes with CBC 

Nonlinear Schemes. The order barrier (Godunov6) for linear schemes implies that the 
CBC schemes with accuracy of second-order or above must be nonlinear schemes, i.e. the 
function / in (15) must be nonlinear. Hereafter, we summarize some of the CBC schemes 
(limited schemes in NavyFOAM). 

van Leer Scheme (van Leer ) 

/($) = • 

Itp-cp1,   ^e[0,1] 

P. £*[0,i] 
(21) 

The NVD of the scheme and the CBC region are shown in Figure 7. 
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Figure 7. NVD of vanLeer scheme with CBC 

Gamma Scheme (Jasak et al. ) 

nv) = 
£«[0,1] 

with  — </?<- 
10 2 

The NVD of the scheme and the CBC region are shown in Figure 8. 

a' *J 

Figure 8. NVD of Gamma scheme with CBC 

HYPER-C Scheme (Leonard) 

fmin(l, J-ft,   ^ e [0,1] 
f(<P) = \ ~ ' ~   rn in ^ P*0,1] 

(22) 

(23) 

The HYPER-C scheme requires that the local Courant number C, < 1.  The NVD of the scheme 

and the CBC region are shown in Figure 9. 
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slope = 

Figure 9. NVD of HYPER-C scheme with CBC 

Ultimate-Quickest (UQ) Scheme (Leonard ) 

.     ,8C, v+O-C, )(6(S*3 

W) min{- 

£«[0,1] 
(24) 

The scheme requires that the local Courant number C, < 1. The NVD of the scheme and the 

CBC region are shown in Figure 10. 

1 

\    f1   31 

t 

/ / 
• 

UQ 

1 
ll-4j /         / 

1   „. slope = — • 

/     \   y 

^ / 
1/ 

i 

f\ 1 V 

Figure 10. NVD of UQ scheme with CBC 

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)  (Ubbink& 

(25) 

Issa   ) 

where y, = min 

/($) = // /HYPER -C(£) + (1-77)/UQ(£) 

(\ + cos 20, 
1   . 9f is the angle between the normal unit vector of the front 
) 

(interface between two phases) and the vector pointing from D to A, see Figure 11. 
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Donor cell (D) 
Acceptor cell (A) 

Figure 11. Angle Gi 

The NVD of the scheme and the CBC region are shown in Figure 12. 

slope 

Figure 12. NVD of CICSAM scheme with CBC 

:Jli High Resolution Interface Capturing Scheme (HRIC) (Muzaferiia & Peric  )   Let 

fA9) = \ 

2$,    pe[(U] 

I,      £eri,I] 
p,      £«[0,1] and 

fAv) = rfUv)H\-Yf)v Wlth Yf =^^, 

The HRIC scheme can be written as 

Av) 
f2(v), 
^/2(^) + (l-^)^    0.3<C,<0.7 
<p, 

C; <0.3 

0.3 *c, 
c, >0.7 

(26) 

The NVD of the scheme and the CBC region are shown in Figure 13. 

13 



Figure 13. NVD of HRIC scheme with CBC 

/-'i Modified HRIC (MHRIC) (Park et al.'-) Let 

f2(V) = 

2<p,    <p e [0, \] 

1, ^6[|,1] 

l*     *«[0',]     and 

min(^, /i(^))i   pe[0,l] 

l^, P*[0,1] 

MHRIC can be written as 

/(^) = r/./;(^) + (i-r/)/:(^) (27) 

with/ A = J\cosdf | . The NVD of the scheme and the CBC region are shown in Figure 14. 

1 

1 
f iv 5) 

• 

yw> 
V i~ 

tjT 

QUICK,'' 

*   / 

9   y 1 ^ 

Figure 14. NVD of MHRIC scheme with CBC 

i k Inter-Gamma Scheme (interGamma) (Jasak & Weller   ) 

/($) = 

- 2$2 + 3p,   <p e [0, ^] 

P«[0,1] 

(28) 
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The NVD of the scheme and the CBC region are shown in Figure 15. 

t u'd 

Figure 15. NVD of inter-Gamma scheme with CBC 

Modified intcr-damma Scheme (lntcrGammaM)   Let 

Mv)- 
-2p' + 3q>,   <pe[0,±] 

i M*,i] 
9, P«[0,1] 

be the original inter-Gamma scheme, which can be modified as follows 

Av) = 
Cf < 0.3 

^/i(^) + (l-^)^   03<Cf<0.7 

Cf > 0.7 

The NVD of the scheme and the CBC region are shown in Figure 16 

(29) 

Figure 16. NVD of interGammaM scheme with CBC 
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Modified inter-Gamma Scheme (interGammaMD) Let 

Mv) = 
-2p2+3p,   £e[0,}] 

l pe[±,l] 
<P, P«[0,1] 

be the original inter-Gamma scheme, and 

The interGammaMD scheme can be written as 

Av) = { 
/2(£), C/<0.3 

^/3(£) + (l-^)^   0.3 SC,* 0.7 
p, C, > 0.7 

(30) 

(31) 

Interpolation Schemes 

Cell-based Surface Interpolation Schemes. 

In cell-center-based finite volume methods, it is often required to calculate the face- 
center value. The interpolation schemes needed for non-convection terms will be introduced in 
this section. The situation is illustrated in Figure 17. The owner and neighbor cells of the face 
may or may not be located within a mesh block of a single processor. 

Owner processor      x      Neighbor processor 

, Processor interface 

Owner ce 

Owner cell 

Neighbor cell 

Neighbor cell » 

(a) internal face (b) coupled processor face 

Figure 17. Cell-based interpolation of face-center value 

Linear Interpolation Surface Interpolation Scheme.  The linear interpolation calculates 
the face-center value as 

<pf = k(pP+(i - xypt, 

where A is the weighting factor calculated as 

(32) 
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A = _      \nf-&N, 

\nrArPr\ + \nf-ArNf\ 

The linear interpolation scheme may produce large errors due to non-orthogonality and skewness 
of unstructured meshes. 

reconCentral Surface Interpolation Scheme. The face-center value can be reconstructed 
using both the value and the gradient at neighboring cell centers. 

9/ -r[<Pr + (v^)p • ty + <p„ + (Vp)w • rNf] (33) 

Upwind Deferred Correction (UPDC) Surface Interpolation Schemes. To improve 
stability, the face-center value can sometimes be calculated using the concept of deferred 
correction (Khosla & Rubin14; Hayase et al.15). 

>«roU./_H       „FOlKold ..... 
<Pf=<Pf    +Wf-<P(    ) (34) 

where (pr
f
ov is the value calculated using a first-order upwind scheme, and <p"  is the value 

calculated using higher-order interpolation schemes. The superscript "old" represents the 
previous time or iteration step. The candidates for the higher-order scheme may include the 
reconCentral scheme and some of the higher-order limited schemes in the next section. 

The first-order upwind scheme can be written as 

<pff
ov = sign+(F; )<pP +[1 -sign+(F,)K (35) 

where Ff =nf • Vf is the volume flux through the face, and 

fl.    Ff > 0 Si^io.    F,<0 
The higher-order normalized variable based limited schemes can be written as 

tf =<Pr+-V('')(<PN-<Pr) (36) 

where T(r) is the limiter function.   Substituting (35) and (36) into (34) yields 

<Pr 
fr+[^(rX^-^)r".    Ff>0 

<P»+[\v(r)(<pr-<p„)fa,    F,<0 

17 
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Node-Based Surface Interpolation Schemes. 

We consider a face of any polyhedral cell 

f* 

Figure 18. Node-based interpolation of face-center value 

Let Ny be the total number of vertices of faces, the face-center value is calculated as the average 

of the nodal values 

1    r> 
?V=Tr2X (38) 

The nodal values are calculated using volume-to-point interpolation described in the following 
section. 

Volume-to-Point Interpolation Schemes 

It is easier to illustrate in two-dimensions and the extension to three-dimension is rather 
straightforward. 

Figure 19. Stencil in cell-based gradient calculation in two-dimensions 

In volume-to-point interpolation,  the  nodal  value   cpn   is calculated  as a  weighted 

averaging of surrounding cell-center values 

^Ete^j/lXy) (39) 
M /-I 

where Nn is the total number of neighboring cells of node n, w;, is the weighting factor. 

Volume-to-Point Interpolation  Based on  PLWA.     In  Pseudo-Laplacian-Weighted- 
Averaging (PLWA) (Holmes & Connell 6; Frink   ; Kim et al.  ), the weighting factors in 
Equation (39) are calculated by solving the following optimization problem. 
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Giving the constraint 

£(*„) = IX, (xr,-*J = 0 
1=1 

Uyn) = YJWcJ(ycj-yn) = 0 (40) 

1=1 

we need to find the weighting factors vv., that minimize the cost function 

C = £,(rcAwcJ)
2 (41) 

,=i 

where Fc t = (xc,, vr,, zc,) is the position vector of the cell center, rn = (xn, yn, zn) is the position 

vector of the node n,   and rcl =\rcl-rn \= J(xcl -xn)
2 + (vr,-y„)2 +(zrJ -zH)

2 . The AH; , is 

related to the weighting factor by w'   = 1 + Awc 1. 

Using the method of Lagrange multipliers, the Lagrange function is defined as 

A( tvCll, wc:,..., wc ,v_; A,, Xy, X,) = C - 2[AxL(-x„) + KM>\)+ KU?*)] (42) 

The optimal solution is found by solving the following equation 

V».,.". ,,...»;.,.:-«..-l,.-l..A(W«-.l»Wr.2 —«Wf.A,.;   4»^»4)*° (43) 

which can be written in matrix form 

[diag(>-2)]    -[Ar]' 

[Ar]1 [0] 

Aw 

R 
(44) 

where 

[diag(r)] = 
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[Ar] = 

XcA~Xn y**~y» Zc.\~Z
n 

Xc.2~Xn yC.2-yn Zc.2~Zn 

Xc.N,       Xn       y<r.N,      ^n       Zc.N.       Zn 

Aw = 

Aw 
C.I 

Aw. c.2 

Aw. 

R 

K 
V 

K , and 

\K -*j 
Ry = ESo'.j -J>J 
R: L>. -o 

Solving the linear system of equations we obtain 

*-W*   and 

Aw=[diag(r2)]-l[Ar]X 

where 

[I] = [Ar]'[diag(r2)rl[Ar] 

(45) 

Volume-to-Point Interpolation Based on IDWA. In Inverse-Distance-Weighted- 
Averaging (IDWA), the weighting factors in Equation (39) are calculated based on the distance 
between the node and each neighboring cell center. 

I 
w«m7F. (46) 

with 

rel  =1 rc, - K |= yj(XeJ ~X„f+ (y„ -y„)2+ (Zr, " Z„ f 
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Diffusion Schemes 

In finite volume methods, the diffusion term can be calculated using the Gauss theorem 

fr(yV<p)dQ= jn(/V<p)dr 

The surface integration in (47) can be approximately calculated as 

\n-{yV<p)dY * J>« • V<p)fSf = 5>A) 

(47) 

(48) 

Owner cell 

face 
Neighbor cell 

Figure 20. Calculating face-normal gradient 

The face-normal gradient can be calculated as 

Kdnj 
= ^ + cr.(v^ 

Ar, 
snGrad correction 

where C, = nf — Arps I \ AFP^ | is the non-orthogonal correction vector, and 

(49) 

(V^)/=AV^,+(1-A)V^ 

X is the inverse-distance weighting factor. 

Solution Algorithms 

Pressure- Velocity Coupling 

Solving the Pressure Equation.   The momentum equation can be written in discretized 
form as a system of linear equations 

AV +Vp =f 

where   V' is the velocity vector. 

(50) 
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p* is the guessed pressure, 

Vp = JV/JVQ 
n 

A = D - B = (Dm + Dhc) - B is the matrix of the linear equations, 

D = (D„+Dfc) = diag(A) 

Din = part of diag(A) contributed from internal faces 

Dbc = part of diag( A) contributed from boundary faces 

- B = A - D = off-diagonal part of A, 

/— ft„ + fie ~ tne source vector absorbing any explicit term and source term, 

fin =part of source vector contributed from internal faces, and 

fk =part of source vector contributed from boundary faces. 

Equation (50) can be written as 

(D-B)V' + Vp' = f (51) 

Giving guessed pressure,/?*, Equation (51) is solved for velocity, v. This is the 
predictor step of the SIMPLE or PISO method. Because the velocity obtained from the predictor 

step doesn't satisfy the continuity equation, both the pressurep' and velocity F'need to be 
corrected. 

In order to derive the discretized pressure equation, the following algebraic manipulation 
was applied to the momentum equation. The matrix A of discretized momentum equations can 
be written as 

with 

Let 

and 

A = D + D^""m' - D£""T - B = (D(„ + Dv) + D£*"v - D^""""v - B (52) 

yycmpiav = comp0nent -average part of diag(A)contributed from boundary faces . 

DD = D„. + Dr"v 

BB = (B + Dr-DJ 
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thus 

A = (DM + Dr°") - (B + D;;"""
V
 - Dte) = D0 - B;) 

Now, Equation (50) can be written as 

(D0-BD)f' + V=7 <53> 

Let  V    and  /?"  be corrected velocity and pressure, respectively. They should satisfy the 
discretized momentum equation (53), i.e. 

(DD-BD)V" + Vp'=J (54) 

which can be approximated as 

DDV"-BnV' + Vp"=f (55) 

Because DD in (55) is a diagonal matrix, it is trivial to solve (55) to obtain 

V" = D-' (B0 T + /) - D-'Vp" = V - D'»?jp- (56) 

where K = D^'(B;, P* + /) is the pseudo-velocity vector. 

Substituting (56) into the continuity equation, V V" =0, we obtain the following discretized 
Poisson equation for pressure 

V(D-JVp")-VV (57) 

It  is  shown  later that  Equation (57)  incorporates  the  idea of the  Rhie-Chow  momentum 
interpolation scheme. 

In the PISO method, consecutive corrector steps may be used to correct pressure and 
velocity, the momentum equation that is satisfied at the (A+l)-th steps is 

DDVkM -BDVk +VpM =/ (58) 

thus 

F*+1 = D0'(B0 Vk + /)-Do'V+l = V ~ Dn'V
+l (59> 

where V = D„'(B0 Vk + /) • Note that k = 0 represents the predictor step, i.e. V° - V'. 

Substituting (59) into the continuity equation V • PA+I =0 yields 

V(Dn'V
+') = V^ (60) 
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User's Guide 

This section provides information for users to help with running any of the updates 
developed specifically as a part of NavyFOAM V1.0. In addition, there is a supplement to the 
original OpenFOAM User's Guide contained in Appendix A that could be useful to readers. For 
more detailed information on the OpenFOAM code and settings consult the OpenFOAM User's 
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf. In addition, to aid users 
several utilities have been developed to aid in post-processing NavyFOAM results, which are 
described in Appendix B. Finally, tutorials have been developed that aid a user in running the 
codes which include: a lid driven cavity problem, a fully submerged axisymmetric body and the 
Wigley hull with free surface in Appendices C, D and E, respectively. It is recommended that 
new user's go through the tutorials to learn the preferred settings to use with the solvers. 

Gradient Schemes 

Navy Least Squares Gradient Schemes 

The gradient scheme is specified by a sub-dictionary entry gradSchemes in the system 
finite volume dictionary file fvSchemes. Users may refer to the OpenFOAM User Guide Ver. 1.5 
Section 4.4.3 on page U-l 10 for more details about this sub-dictionary. Figure 21 illustrates an 
abbreviated example. The default gradient scheme is the one using Gauss theorem with the face- 
center value calculated by linear interpolation. The scheme used in calculating the gradient of 
pressure is NavyLeastSquares where the gradient is calculated in a least squares sense, more 
details regarding the NavyLeastSquares gradient scheme can be found in the Technical 
Description section. 

Dictionary file: 

$(CASE_DIR)/system/fvSchemes 

Sub-dictionary: 

gradSchemes 

//-  default  scheme 

default Gauss   linear; 

//-  gradient  scheme   for  pressure  p 

grad(p) NavyLeastSquares; 

Figure 21. Example of gradSchemes sub-dictionary 
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Interpolation Schemes 

Cell-based Surface Interpolation Schemes 

reconCentral Surface Interpolation Scheme The reconCentral surface interpolation 
scheme calculates the face-center value of <j> using both the value and the gradient of <f> at the 
center of the owner and neighbor cells. The following example in Figure 22 shows how to 
specify the interpolation schemes in the sub-dictionary entry interpolationSchemes of the 
system finite volume dictionary file fvSchemes. Users may refer to OpenFOAM User Guide Ver. 
1.5 Section 4.4.1 on page U-108 for more details about this sub-dictionary. The default scheme is 
linear interpolation, where the face-center value is calculated as a weighted average of the value 
at the center of the owner and neighbor cells. The weighting factors are based on inverse 
distance. The reconCentral scheme is used to calculate the face-center value of U. 

Dictionary file: 

$(CASE  DIR)/system/fvSchemes 

Sub-dictionary: 

interpolationSchemes 

I 
//-   default   scheme   is   linear   interpolation 

default linear; 

//-   surface  interpolation  of U 

interpolate(U)        reconCentral; 

Figure 22. Example of interpolationSchemes sub-dictionary 

reconCentralDC Surface Interpolation Scheme The reconCentral is almost a second- 
order interpolation scheme. Besides calculating the surface interpolation at the face-center, it 
may also be used to improve the accuracy in discretizing the convection term in the momentum 
equation using deferred correction. The following example in Figure 23 shows the sub-dictionary 
divSchemes in the finite volume system file fvSchemes. Users may refer to OpenFOAM User 
Guide Ver. 1.5 Section 4.4.5 on page U-lll for more details about this sub-dictionary. The 
convection term is integrated using the Gauss theorem and the face-center velocity u in the 
convection term takes the Upwind Deferred Correction (UPDC) form using the reconCentral 
scheme to calculate the higher-order correction. More details regarding UPDC can be found in 
the Technical Description Section. 
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Dictionary file: 

$(CASE  DIR) /system/fvSchemes 

Sub-dictionary: 

divSchernes 

//-   convection   term  in momentum equation 

div(phi,   U) Gauss   reconCentralDC; 

Figure 23. Example of divSchemes sub-dictionary 

Node-based Surface Interpolation Schemes 

reconPLWA Surface Interpolation Scheme The reconPLWA surface interpolation 
scheme calculates the face-center value as an average of the nodal values on the face. The nodal 
value is calculated from cell-center values using a volume-to-point interpolation scheme based 
on Pseudo-Laplacian-Weighted-Averaging (PLWA). More details of PLWA can be found in the 
Technical Description. The following example in Figure 24 shows the sub-dictionary entry 
interpolationSchemes in the system finite volume dictionary file fvSchemes. Users may 
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.1 on page U-I08 for more details about this 
sub-dictionary. The default interpolation scheme is linear. The next line of the dictionary shows 
that the reconPLWA scheme is used to calculate the face-center value of U. 

Dictionary file: 

$(CASE  DIR)/system/fvSchemes 

Sub-dictionary: 

interpolationSchemes 

I 
//-   default  scheme   is   linear  interpolation 

default linear; 

//-  surface  interpolation  of U 

interpolate(U)       reconPLWA; 

Figure 24. Example of interpolationSchemes  sub-dictionary 

reconlDWA Surface Interpolation Scheme      The reconlDWA surface interpolation 
scheme calculates the face-center value as an average of the nodal value on the face. The nodal 
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value is calculated from cell-center values using a volume-to-point interpolation scheme based 
on Inverse-Distance-Weighted-Averaging (IDWA). More details of IDWA can be found in the 
Technical Description. The following example in Figure 25 shows the sub-dictionary entry 
interpolationSchemes in the system finite volume dictionary file fvSchemes. Users may 
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.1 on page U-108 for more details about this 
sub-dictionary. The default interpolation scheme is linear. The reconlDWA scheme is used to 
calculate the face-center value of u. 

Dictionary file: 

$(CASE  DIR)/system/fvSchemes 

Sub-dictionary: 

interpolationSchemes 

I 
//- default scheme is linear interpolation 

default linear; 

//- surface interpolation of U 

interpolate(U)   reconlDWA; 

} 

Figure 25. Example of interpolationSchemes  sub-dictionary 

Convection Schemes 

Convection Boundedness Criterion (CBC) Schemes 

The following NVD {normalized variable diagram) based CBC schemes are particularly 
useful in capturing interfaces between two fluids, e.g. air and water, in the two-phase flow solver 
of NavyFOAM. More details of CBC schemes can be found in the Technical Description. 

Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)    The 
following example in Figure 26 shows the sub-dictionary entry divSchemes of the system finite 
volume dictionary file fvSchemes that specifies the divergence schemes for the convection term 
in the transport equation of volume fraction (gamma). In this example the convection term is 
integrated using the Gauss theorem and the CICSAM scheme is used to calculate the face-center 
value of gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U- 
111 for more details about this sub-dictionary. 
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Dictionary file: 

$(CASE_DIR)/system/fvSchemes 

Sub-dictionary: 

di vSchemes 

( 
//- convection term in gamma equation 

div(phi,gamma)        Gauss CICSAM; 

) 

Figure 26. Example of di vSchemes  sub-dictionary 

High Resolution Interface Capturing Scheme (HRIC) The following example in 
Figure 27 shows the sub-dictionary entry di vSchemes of the system finite volume dictionary 
file fvSchemes that specifies the divergence schemes for the convection term in the transport 
equation of volume fraction (gamma). In this example, the convection term is integrated using 
the Gauss theorem and the HRIC scheme is used to calculate the face-center value of gamma. 
Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-lll for more 
details about this sub-dictionary. 

Dictionary file: 

$(CASE  DIR)/system/fvSchemes 

Sub-dictionary: 

divSchemes 

I 

//- convection term in gamma equation 

div(phi,gamma) Gauss HRIC; 

) 

Figure 27. Example of di vSchemes sub-dictionary 

Modified HRIC (MHRIC) The following example in Figure 28 shows the sub-dictionary 
entry di vSchemes of the system finite volume dictionary file fvSchemes that specifies the 
divergence schemes for the convection term in the transport equation of volume fraction 
(gamma). In this example, the convection term is integrated using the Gauss theorem and the 
MHRIC scheme is used to calculate the face-center value of gamma. Users may refer to 
OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-lll for more details about this sub- 
dictionary. 
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Dictionary file: 

$(CASE DIR)/system/fvSchemes 

Sub-dictionary: 

divSchemes 

//-  convection  term in gamma equation 

div(phi,gamma) Gauss MHRIC; 

Figure 28. Example of divSchemes  sub-dictionary 

Inter-Gamma Scheme (interGamma) The following example in Figure 29 shows the 
sub-dictionary entry divSchemes of the system finite volume dictionary file fvSchemes that 
specifies the divergence schemes for the convection term in the transport equation of volume 
fraction (gamma). In this example, the convection term is integrated using the Gauss theorem 
and the interGamma scheme is used to calculate the face-center value of gamma. Users may 
refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-l 11 for more details about this 
sub-dictionary. 

Dictionary file: 

$(CASE  DIR)/system/fvSchemes 

Sub-dictionary: 

divSchemes 

< 

//- convection term in gamma equation 

div(phi,gamma)        Gauss interGamma; 

} 

Figure 29. Example of divSchemes  sub-dictionary 

Modified inter-Gamma Scheme (interGammaM) The following example in Figure 30 
shows the sub-dictionary entry divSchemes of the system finite volume dictionary file 
fvSchemes that specifies the divergence schemes for the convection term in the transport 
equation of volume fraction (gamma). In this example, the convection term is integrated using 
the Gauss theorem and the interGammaM scheme is used to calculate the face-center value of 
gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-l 11 for 
more details about this sub-dictionary. 
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Dictionary file: 

$(CASE  DIR) /system/fvSchemes 

Sub-dictionary: 

divSchemes 

( 

//-   convection   term  in   gamma   equation 

div(phi,gamma) Gauss   interGammaM; 

} 

Figure 30. Example of divSchemes sub-dictionary 

Modified Inter-Gamma Scheme (interGammaMD) The following example in Figure 
31 shows the sub-dictionary entry divSchemes of the system finite volume dictionary file 
fvSchemes that specifies the divergence schemes for the convection term in the transport 
equation of volume fraction (gamma). In this example, the convection term is integrated using 
the Gauss theorem and the interGammaMD scheme is used to calculate the face-center value of 
gamma. Users may refer to OpenFOAM User Guide Ver. 1.5 Section 4.4.5 on page U-l 11 for 
more details about this sub-dictionary. 

Dictionary file: 

$(CASE DIR)/system/fvSchemes 

Sub-dictionary: 

divSchemes 

I 
//-   convection   term  in  gamma  equation 

div(phi,gamma) Gauss   interGammaMD; 

I 

Figure 31. Example of divSchemes sub-dictionary 
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Example Results 

Results are demonstrated for a fully submerged axisymmetric body, Body-1, the 
KVLCC2 tanker without a free surface using the double body approximation, DTMB Model 
5415 with both fixed sinkage and trim as well as dynamic sinkage and trim and the Joint High 
Speed Sealift (JHSS) concept surface ship with and without waterjet propulsion. 

Body-1 

This section involves using NavyFOAM's steady, incompressible Reynolds Averaged 
Navier-Stokes (RANS) solver for a 3-D body-of-revolution referred to as Body-l. The RANS 
equations are solved using NavyFOAM's k-omega SST turbulence model. Only half the body is 
solved, as symmetry is assumed, and the domain is non-dimensionalized by length. The 
Reynolds number (Re) based upon the body length is 6.6 million. The boundary conditions used 
for these computations are: 

• Defined fixed turbulent quantities (k, omega, nuTilda) and velocity (U) at inlet 
• Defined pressure (p) at outlet 
• Zero gradient for all quantities at farfield boundaries 
• nuTilda = 0, k ~ 0, and omega set to zero gradient at the walls 

A side view of the ONR Body l geometry can be seen below in Figure 32. 

Figure 32. Body-1 geometry 

Computations were done on unstructured meshes that contain tetrahedral (in the flow 
field) and prism (in the boundary layer) elements. Grids for these computations typically 
contained approximately 2 million cells total. The left of Figure 33 shows an unstructured 
surface mesh on the body and the symmetry plane, and the right side of Figure 33 shows a 
surface mesh with a span-wise cross sectional cut of the volume mesh at the midbody. 
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Figure 33. Surface mesh on the body and symmetry plane (left) and surface mesh with volume 
mesh cross cut (right) 

The computational domain is split into many domains to allow the computations to be run 
in parallel. The domain is split using the METIS domain decomposition method. Typical steady 
state run times for this geometry are 3-5 hours depending on the number of domain partitions. 
Steady state convergence is assumed when the forces (pressure and viscous) on the body change 
by a negligible amount from one iteration to the next. Figure 34 shows results from NavyFOAM 
computations. 

Figure 34. Axial velocity (Ux) contours on the symmetry plane and pressure (Press) contours on 
the hull 

One can notice that the stagnation point is qualitatively predicted well at the nose of the 
body. The velocity slows to zero and the pressure on the body is a maximum at the nose. While 
the drop in pressure associated with the acceleration of the fluid around the shoulder of the bow 
is also predicted correctly. Computations also show the flow remaining attached along the body 
leaving a wake after the stern. 

Figure 35 shows some of the quantitative results from the NavyFOAM computations 
compared to experimental measurements. 
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Figure 35. Skin friction coefficient (Q) and Pressure coefficient (Cp) plotted along the length of 
the body 

In Figure 35 there is a slight disagreement in predicted and measured Q at the tail of the 
body, but the trends are matched well. The NavyFOAM Cp predictions match experimental 
measurements well along the body. 

Figure 36 below shows comparisons of computed and measured boundary layer profiles 
at various locations along the body. 
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Figure 36. Axial velocity boundary layer plots at x/L = 0.755 (left), x/L = 0.846 (middle), x/L = 
0.934 (right) 

The axial velocities are non-dimensionalized by the free stream velocity and boundary 
layer lengths are non-dimensionalized by the radius. NavyFOAM computed boundary layer 
velocity profiles match experimental measurements very well at various locations along the 
body. 

In conclusion, this effort shows that NavyFOAM has the capability to successfully 
predict quantitative and qualitative characteristics for a body-of-revolution, as demonstrated on 
the Body-1. The RANS computations were carried out successfully on multiple processors on 
unstructured meshes. Results for non-body-of-revolution hull forms can be found in Delaney et 
al.'9. 
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KVLCC2 

The K.VLCC2 is a tanker used for code validation by many organizations and as a part of 
several international workshops. The stern of the K.VLCC2 with predicted streamlines is shown 
in Figure 37, flow is from left to right. 

Figure 37. Stern flow of the KVLCC2 

We ran sRansFOAM for this double-body flow case in which the free surface is replaced 
by a symmetry plane. We deliberately chose to use two unstructured meshes to evaluate spatial 
accuracy of the predictions. One of them, shown at the left of Figure 38, is a hybrid 
unstructured mesh generated using SolidMesh developed at the SimCenter of the Mississippi 
State University. The mesh consists of prisms with triangular bases near the hull surface and 
tetrahedral in the rest of the domain. The total cell count is approximately 8 million. The other 
mesh, shown at the right of Figure 38, is a hexahedron-dominant unstructured mesh generated 
using the snappyHexMesh utility available in the standard OpenFOAM package. With the latter, 
we put in three-levels of embedded fine-mesh blocks to better resolve the near-body region. Its 
total number of elements is a little over 3 million. The near-wall mesh resolutions for both 
meshes are such that the distance from the wall is larger than 40 wall units (y+ > 40) over a large 
portion of the hull surface. So, the wall function approach was employed to provide the 
boundary conditions for the momentum equations and the turbulence equations. Wilcox's k-co 
model (Wilcox3) was used for turbulence closure for its good track record for this class of flows 
(Kim and Rhee20). 

Figure 38. Grids used for the KVLCC2 

The contours of mean axial velocity (U) at the propeller plane (x/L = 0.9823) are shown 
in Figure 39 for the two meshes. As can be seen, the characteristic shape of the t/-contours 
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("hook"-shaped or "rabbit's" ear-like) is closely captured by both meshes. The contours of 
turbulent kinetic energy at the same plane are depicted in Figure 40. The region of high 
turbulent kinetic energy, which originates from the upstream boundary layer and overlaps with 
the region of low axial velocity depicted in Figure 39 is reproduced reasonably well by the 
computations, although their peak values are somewhat under predicted. The overall prediction 
accuracy shown here with the unstructured meshes used in this study is remarkably good. More 
details on these calculations can be found in Kim et al."1. 

Figure 39. Contour of axial velocity at x/L = 0.9825 predicted on the two meshes. Top    hybrid 
(prism + tet) unstructured mesh; Bottom - snappyHexMesh 
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Figure 40. Contour of turbulent kinetic energy at x/L = 0.9825 predicted on the two meshes. Top 
- hybrid unstructured (prism + tet); Bottom - snappyHexMesh 

DTMB Model 5415 

Fixed Sinkage and Trim 

These computations were carried out using ransFSFOAM for a single Froude number of 0.28 
using three different isotropic eddy-viscosity based turbulence models including the realizable k- 
£(Shih et al.:2), SST k-co (Menter ) and Wilcox's k-co (Wilcox ) models. The computational 
meshes were generated using GridPro (www.gridpro.com). a commercial meshing package well 
known for high-quality hexahedral meshes. Great care was taken to ensure that such salient 
features as the hull-generated waves, the boundary layer along the entire hull, and the near-wake 
are adequately resolved. To check grid-dependency of the solutions, three systematically refined 
hexahedral meshes were used with 13 million (Fine), 6 million (medium), and 3 million (coarse) 
elements. One of the grids used is shown in Figure 41. 
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Figure 41. Grid for DTMB Model 5415 

Although a time-marching, transient solution algorithm is employed in ransFSFOAM, 
our goal was to obtain steady-state solutions. An iterative implicit solution algorithm employed 
in ransFSFOAM greatly accelerated solution convergence by allowing us to use a fairly large 
time-step size. The transient computations were continued for sufficiently long periods of time 
until not only the global quantities, such as the forces and moments acting on the hull, but also 
other flow features like wave elevation, hull boundary layer and wake, all reach steady states. 

Figure 42 illustrates the wave pattern predicted with the SST k-fo model result on the 6 
million cell mesh, along with the measured one. Figure 43 shows the wave elevations along the 
three longitudinal cuts (y/L = 0.082, 0.172, 0.301) obtained using the SST k-ca model on all three 
meshes. First of all, the results indicate grid-convergence of the predictions, all of which are in 
excellent agreement with the data. The results obtained using three different turbulence models 
on the medium (6 million cell) mesh are shown in Figure 44. The differences among the three 
results are measurable yet small. The realizable k-s model results appreciably deviate from the 
other two k-co model results. 
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Figure 42. Contour of wave elevation for DTMB 5415 with SST k-a> model result on the 6 
million cell mesh 
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Figure 43. Wave elevations along three longitudinal cuts obtained using SST k-o> model on three 
different meshes: top - y/L = 0.082; middle - y/L = 0.172; bottom - y/L = 0.301 
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Figure 44. Wave elevations along three longitudinal cuts obtained using three different 
turbulence models on the 6 million cell mesh : top - y/L = 0.082; middle - y/L = 0.172; bottom 

-y/L = 0.301 

Figure 45 shows the contours of axial velocity at x/L = 0.935 obtained using the three 
turbulence models on the 6 million cell mesh. All three turbulence models capture the gross 
feature of the boundary layer - the distorted velocity contours reflecting thickening of the stern 
boundary layer due to convergence of wall-limiting streamlines, and also the ensuing vortex 
sheet, the degree of which varies model to model. The prediction by Wilcox's k-co model (the 
bottom-right figure) seems to be the closest to the measurement. 
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Figure 45. Contour of axial velocity (U) at x/L = 0.935 obtained on 6 million cells, a) measured; 
b) SST k-o); c) realizable k-s; d) Wilcox's k-ca 

Dynamic Sinkage and Trim 

The dynamic sinkage and trim computations were carried out using ransFSDyMFOAM on a 
1.5 million-cell hexahedral mesh for three different Reynolds numbers. Re = 5.96 * 10\ 1.19 x 

7 7 
10 , 1.75 x 10 ' and the corresponding Froude numbers, Fn = 0.138, 0.28, 0.41, respectively. 
Unsteady RANSE was solved along with the equations of 2-DOF (heave and pitch) ship motion. 
The transient runs were continued until the resistance, the trim angle, and the sinkage reach 
statistically steady states. The time-averaged resistance, trim, and sinkage are shown in Figure 
46 along with the experimental data. Despite the relatively coarse mesh used in this study, the 
predictions are in fair agreement with the measurements. More details on these calculations can 
be found in Kim et al."1. 
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Figure 46. Prediction of a) resistance, b) trim and c) sinkage for the DTMB 5415 model 

Joint High Speed Sealift (JHSS) 

This section involves using NavyFOAM's multiphase, incompressible Reynolds 
Averaged Navier-Stokes (RANS) solver for the Joint High Speed Sealift (JHSS) concept surface 
ship. The JHSS concept vessel is a challenging computational case because of its complex 
geometry and free surface interactions with both the bow and waterjets. The RANS equations are 
solved using NavyFOAM's k-omega SST turbulence model. Only half the body is solved, as 
symmetry is assumed, and the domain is non-dimensionalized by ship length. The concept vessel 
is scaled from full scale by constant Froude number to a model scale. The Froude number (Ft) 
ranges from -0.23-0.40. The air and water phases are accounted for using NavyFOAM's implicit 
Volume-of-Fluid (VOF) capability. The boundary conditions used for these computations are: 

• Defined fixed turbulent quantities (k, omega, nuTilda) and velocity (U), and calm 
water volume fraction conditions (gamma) at inlet 

• Defined pressure (p) at outlet 
• Zero gradient for all quantities, and calm water volume fraction conditions 

(gamma) at far field boundaries 
• nuTilda = 0, k - 0, and omega set to zero gradient at the walls 

Side and stern views of the JHSS geometry can be seen below in Figure 47. The left side 
of Figure 47 shows the profile of the concept vessel including the gooseneck bow, which has 
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very little clearance from the free surface. The right side of the figure shows the waterjets from 
the stern. Both the gooseneck bow and the waterjet inlets/nozzles are complex geometry features 
that require special care/treatment in the meshing process. 

Figure 47. JHSS concept vessel geometry 

Unpowered Bare Hull Computations 

Initially, computations are done with the bare hull (no waterjets included in the model) to 
test NavyFOAM's multiphase sinkage and trim capability. Later in the report powered 
computations involving the waterjets will be discussed. Figure 48 shows the structured surface 
mesh on the bare hull used for these calculations. The surface mesh on the JHSS displays mesh 
refinement around the free surface to capture free surface disturbances. The meshes used for this 
study were typically on the order of 2-4M cells total. 

Figure 48. JHSS structured surface mesh on the bare hull 

The computational domain is split into many domains to allow the computations to be run 
in parallel. The domain is split using the METIS domain decomposition method. Typical steady 
state run times for this geometry are 48-72 hours depending on the number of domain partitions. 
Steady state convergence is assumed when the forces (pressure and viscous) on the body and 
sinkage and trim values change by a negligible amount from one iteration to the next. Figure 49 
shows wave profile results from NavyFOAM computations. 
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Figure 49.   JHSS wave profile on the hull for various NavyFOAM meshes and experimental 
measurements, scaled up to full scale (full scale LBP -950 ft) 

Figure 49 shows results from a NavyFOAM grid study, and experimental measurements 
for a slightly different JHSS model. A grid resolution study and a blocking study resulted in 3 
different meshes (OF-A, OF-B, and Ref OF-A). The grid study showed that NavyFOAM gave 
relatively consistent results for all three meshes, thus the grid scheme shown in Figure 48 is used 
for all results in this report. Figure 49 also shows that the NavyFOAM predicted wave profiles 
match experimental measurements well. However, one can see that the bow wave is slightly 
under predicted. This is most likely due to a lack of grid resolution in the bow area and/or need 
for a sharper volume fraction discretization scheme. Nevertheless the differences are relatively 
small considering the ship length is 950 feet and the bow wave is under predicted by ~1 foot. 

Figure 50 shows some axial velocity boundary layer profiles upstream of where the 
waterjet inlet would be located (inboard on the left and outboard on the right). NavyFOAM 
results (OF) are compared to both experimental measurements (Exp) and previous double body 
calculations with another RANS solver (TENASI). The NavyFOAM boundary layers match 
experimental measurements very well. These boundary layer plots are important because 
powering predictions ultimately depend on (amongst other things) accurate prediction of the 
flowfield upstream of the waterjet inlets. 
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Figure 50. Inboard (left) and outboard (right) axial velocity boundary layer plots for 
NavyFOAM free surface computations (OF), TENAS1 double-body computations (TEN), and 

experimental measurements (Exp) 

Figure 51 shows sinkage and trim values over the course of a NavyFOAM run for three 
Froude number cases. Each plot shows a consistent pattern for both sinkage and trim for all run 
times, thus showing that the multiphase solver is relatively robust, and wild swings in sinkage 
and trim over the course of a run are not predicted. 
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Figure 51. Sinkage and trim run time values plotted for three different Froude numbers 

Figure 52 shows free surface plots for the bare hull configuration under fixed (to the 
design point) and free sinkage and trim cases. These plots show that the predicted wave profiles 
for the free to sink and trim case are similar to the profiles predicted under fixed conditions. 

Figure 52. Fixed and free sinkage and trim NavyFOAM free surface plots colored by wave 
elevation 
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Figure 53 shows total resistance predictions on the body over various Froude numbers for 
both NavyFOAM and experimental measurements. One can see that NavyFOAM predicts drag 
on the body extremely well for all Froude numbers as compared to experiment. These successful 
predictions are important because resistance prediction is a key to powering predictions. 
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Figure 53. JHSS resistance for various Froude numbers predicted by experiment and 
NavyFOAM 

Figure 54 shows sinkage (top) and trim (bottom) comparisons to experimental 
measurements for various Froude numbers. NavyFOAM sinkage predictions match experimental 
measurements very well, with a slight discrepancy at the highest Froude number. NavyFOAM 
trim predictions also match experimental measurements well over the range of Froude numbers, 
with a slight discrepancy at the two highest Froude numbers. Although the trim differences may 
look large they only differ by fractions of a degree. In both the sinkage and trim cases the overall 
trends are predicted correctly. 
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Figure 54.   JHSS bare hull sinkage (top) and trim (bottom) predictions for various Froude 
numbers 
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Powered Computations with Waterjets 

The rest of this section will discuss powered JHSS conditions. The powering model 
described below is for the JHSS concept vessel fixed at design sinkage and trim. The waterjet 
pumps are simulated by a body force model in NavyFOAM, which imposes a pressure jump over 
a volume region as specified by the user. Figure 55 shows the surface mesh on the waterjet 
region of the JHSS. The complexity of the waterjet inlet geometry led to the desire to use 
unstructured elements (tetrahedral and prism) to grid around the waterjet inlets. NavyFOAM\s 
Generalized Grid Interface (GGI) capability allows us to combine the structured mesh used for 
the bare hull computations with an unstructured grid around the waterjet inlets. Figure 55 shows 
the different structured and unstructured surfaces on the hull. 

Figure 55. Surface mesh at the stern showing GGI region around waterjets 

Powered computations are carried out similar to the process described above for the bare 
hull case (domain decomposition, steady state criterion, etc.). One additional steady state 
criterion is added for the powering case: the resistance on the body must match an artificial tow 
force (to match experimental tow tank results) and the thrust in the waterjets provided by the 
body force model to simulate self propulsion. Figure 56 shows axial velocity contours through an 
inboard waterjet inlet. The right side of Figure 56 shows the volume mesh at this cross cut. One 
can see that the flow remains smooth through the GGI interfaces, thus NavyFOAM*s GGI 
capability successfully handles these complex flow interfaces. 

Figure 56. Axial velocity contours through the GGI modeled waterjet without (left) and with 
(right) volume mesh overlayed 

Figure 57 shows axial velocity (Vx) contours predicted by NavyFOAM for the inboard 
(right) and outboard (left) waterjets just upstream of where the waterjet pumps (or body force 
model in NavyFOAM's case) would reside. The qualitative look of the flowfield upstream of the 
pump matches previously validated TENASI computations very well. It is important to 
accurately capture the flow upstream from the pump as it is a key factor in final power (DHP) 
predictions. NavyFOAM predicted self propulsion at a thrust of 163 N, while experimental tests 
resulted in a self propulsion point of 153 N. There is a slight discrepancy between experiment 
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and NavyFOAM self propulsion points, but they are still quite close considering the different 
methods (tow tank experiments vs. computations) used in obtaining the results. 

Figure 57. Axial velocity contours inside the waterjets 

Figure 58 shows the free surface colored by wave height for the powered JHSS as 
predicted by NavyFOAM. The wave pattern is similar to that found in the bare hull case except 
in the stern region, as it should be. The rooster-tail at the stern is captured correctly, and the 
affect of the flow exiting the waterjets can be seen. 

Figure 58.   Powered JHSS free surface plot colored by wave elevation 

Figure 59 shows a photograph of the flow exiting the waterjets during tow tank tests 
compared to NavyFOAM's post-processed results. One can see that the NavyFOAM 
computations predict the complex physics taking place at the stern very well. The interaction 
between the rooster-tail shooting out from underneath the stern and the flow exiting the waterjets 
is captured very well in NavyFOAM. 
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Figure 59.   Experimental photograph (left) and NavyFOAM post-processed JHSS powered stern 

In conclusion, NavyFOAM displays the capability to accurately predict complex physics 
for surface ships. The JHSS concept vessel is an especially complex surface ship due to the 
gooseneck bow and the waterjet inlets/powering. Initially, the hull resistance, sinkage and trim of 
the bare hull case are predicted with the hull free to sink and trim. Navy FOAM results match 
experimental measurements very well for various Froude numbers that take the concept vessel 
through different ship attitudes. Finally, self propulsion is predicted with a body force model (in 
place of the actual waterjet pumps) providing thrust that balances out the model's resistance. 
NavyFOAM powering predictions match experimental measurements well. 

Summary 

This report provides a guide to NavyFOAM V1.0, which is based on the OpenFOAM 
open source software. A brief technical description of the code is given with an emphasis on 
those changes made for NavyFOAM V1.0 that differentiates it from the standard OpenFOAM 
offering. More details on OpenFOAM specifically can be found in the OpenFOAM guides 
referenced in this report. Complementing the technical description of NavyFOAM changes 
there is a User's Guide section to help users of NavyFOAM properly implement the use of these 
improvements. Results are presented for a variety of Navy relevant configurations including a 
fully submerged axisymmetric body, a tanker, DTMB Model 5415 (pre-contract design for the 
DDG-51) and the Joint High Speed Sealift (JHSS) concept. Results for all cases compare will 
with experimental data. Results are also presented for a variety of grid types and turbulence 
models providing some indication of the capabilities available with the code. Finally, several 
tutorials as well as other information that is directly aimed at helping users successfully use the 
code are also provided. 
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Appendix A: Supplemental User's Guide 

This section is meant to supplement the original OpenFOAM User's Guide. For more 
detailed information on the OpenFOAM code and settings consult the User's Guide: 
http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf. 

Standard solvers that are used: 

• icoFoam (transient, laminar, incompressible, single phase) 
• simpleFoam (steady, RANS, incompressible, single phase) 
• interFoam (transient, RANS, incompressible, multi-phase) 

Files Contained in the system Directory include: 

(1) controlDict 

(2) decomposeParDict 

(3) fVSchemes 

(4) fvSolution 

controlDict 

Dictionary that controls run parameters and output data from the run. 

Application: here you specify the solver used (i.e. simpleFoam, icoFoam, etc.). This is 
not essential. Specifying the executable here doesn't seem to have any control over the run. 

StartFrom: here you specify when to start the run from. Options are: 

firstTime - start from the earliest time directory available 

startTime    start from the time specified by startTime on the next line 

latestTime - start from the most recent time directory available. 

startTime: enter the time to start the run from when StartFrom ? startTime; is selected. 

StopAt: here you specify when to stop the application. Options are: 

endTime - stop run at time specified by endTime on the next line 

writeNow - stop the run at the next iteration and write out the last time step 

noWriteNow     stop the run at the next iteration and don't write time info at last time 
step 

nextWrite - stop the run at the next scheduled write time specified by writeControl 

endTime: time when run will stop. Only valid when stopAt ? endtime; is selected 

deltaT: here you specify the run time step. This is typically / for steady runs and for 
unsteady runs this is superceded by maxCo, which is discussed below. 

WriteControl: here you specify when/how to output information. Options are: 

timeStep    writes data every writelnterval time steps 

runTime - writes data every writelnterval seconds of run time 
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adjustableRunTime - this is the same as runTime, except it will adjust the time steps to 
coincide with the writelnterval 

cpuTime - writes data every writelnterval seconds of CPU time 

clockTime - writes data every writelnterval seconds of real time 

writelnterval: scalar data that specifies time output from writeControl 

purgeWrite: this is an integer value that specifies how many output time directories are 
stored. When the max number of purgeWrite directories have been written, the newest time data 
will over write the oldest time directory. A value of 0 means that no time data will be 
overwritten. 

WriteFormat: here you specify the format of the output data. Options are: 

ascii - ASCII data with the amount of significant figures specified by writePrecision 

binary    Binary data 

ascii is typically used 

writePrecision: number of significant figures ASCII writeFormat is written out to. 

WriteCompression: here you specify the compression (if any) of the output files. Options 
are: 

uncompressed - No data compression 

compressed - gzip compression 

compressed has typically been used 

timeFormat: here you specify the format for the time directory names. Options are: 

fixed - all time directories are written in fixed format (i.e. 123.456) 

scientific    all time directories are labeled in scientific format (i.e. 1.23456e+03) 

general - specifies scientific format of exponent is less than -4, otherwise fixed 

general has typically been used 

timePrecision: here you specify the number of significant figures for timeFormat time 
directory labels. 6 is the default and is typically used. 

GraphFormat: here you specify the graph data written by an application. Options are: 

raw - data in ASCII format in columns 

gnuplot   data in gnuplot format 

xmgr - data in Grace/xmgr format 

/plot - data in j Plot format 

typicall raw is specified, but this depends on the user preference. 

RunTimeModifiable: here you specify yes to have the directories (including controlDict) 
read at the beginning of each time step, or no to have the run proceed without rereading 
directories. This is typically set to yes, and should remain so to avoid confusion. 
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AdjnstTimeStep: select yes for an adjustable time step (whose size is determined by 
mcixCo and maxDeltaT), or no for a constant time step as specified by deltaT. 

MaxCo: This adjusts the time step to achieve the specified maximum CFL number. This 
value is typically low 0(1) at the beginning of a run, and ramped up 0(10) once the solution 
becomes more stable. 

MaxDeltaT: this value is a limit to the maximum time step achievable, when a maxCo is 
specified. 

** At the bottom of the controlDict (or anywhere within) you can specify additional 
libraries or functions to be loaded at run-time. Turbulence model and dynamic mesh motion libs, 
and force functions are common examples of what have been used. 

decomposeParDict 

Dictionary that contains all input information on domain decomposition for parallel 
processing runs. 

Subdictionary: numberOfDomains 

Here you specify the number of partitions you want your grid to get split up into. 

Subdictionary: method 

Here you specify the method of domain decomposition. Options are: 

simple      domain is decomposed into volumes that are similar in all coordinate 
directions. 

hierarchical - user can specify the order of direction for simple decomposition. 

scotch - attempts to minimize the number of geometric boundaries. 

metis -   similar to scotch, but is not free for commercial use, it will eventually be 
discontinued. 

manual - user manually specifies decomposition of each cell to a processor. 

metis has traditionally been used during testing, occasionally simple decomposition is 
used. User should use metis except for special circumstances. 

Subdictionary: simpleCoeffs 

Here you specify n number of processors in each direction to decompose domain, and 
cell skew factor (delta) for decomposition. This is only necessary for simple domain 
decomposition. 

Subdictionary: hierarchicalCoeffs 

Here you specify n number of processors in each direction to decompose domain, and 
cell skew factor (delta), and the order of directions (i.e. xyz or zyx) for decomposition. This is 
only necessary for hierarchical domain decomposition. 

Subditionary: scotchCoeffs 

Here you specify the weighting factors (processor^'eights) for each individual processor. 
The numbers for each processor are normalized, so any values can be accepted, no matter the 
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sum. You can also specify the strategy, but it is not clear what this value means. This is only 
necessary for scotch domain decomposition. 

Subdictionary: metisCoeffs 

Here you specify processor Weights, as described above in scotchCoeffs. This is only 
necessary if you specify metis decomposition. 

Subdictionary: manualCoeffs 

Here you specify the name of a data fde that contains processor allocations for each cell. 
This is only necessary if you specify manual decomposition. 

Subdictionary: distributed 

This is an optional subdictionary, where you state yes or no, whether there is geometry 
data in any other directories that needs to be decomposed with the current directory. 

Subdictionary: roots 

If you chose yes to distributed, here you list the address(es) to additional directories. 

fvSchemes 

Dictionary that contains numerical scheme input: interpolation methods, temporal and 
spatial discretization information 

Subditctionary: ddtSchemes 

This subdictionary contains first time derivative discretization method 

Eider (lsl order implicit) is the only method that has been consistently used 

Subdictionary: gradSchemes 

This subdictionary contains discretization information for the gradient terms 

Gauss linear and leastSquares. The Gauss linear method has been used most frequently, 
yielding consistent results. The leastSquares method is believed to be more accurate when 
calculating the gradient on non-uniform meshes, but bugs were encountered early in the V & V 
process. Improvement of the leastSquares gradient method has been an ongoing effort. 

Limiting is available (i.e. Gauss linear limited); however, this was proven to negatively 
affect the solution during the V & V process. 

Subdictionary: divSchemes 

This subdictionary contains discretization information on the divergence terms. 

Div(phi,U) is commonly refered to as the convection term in the momentum equation. 
Typically, a 2n order upwind is used for this term,Gauss linearUpwind cellLimited Gauss linear 
1.0. 

Turbulent quantities (nuTilda, k, omega, epsilon, etc.) are usually solved lNl order upwind 
(Gauss upwind), but it may be necessary to solve the 2nd order upwind (Gauss linearUpwind 
cellLimited Gauss linear 1.0). 

Multiphase gamma terms... 
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*Note: There will be an error message if the term div((nuEff*dev(grad(U). T()))) is left 
out, or if a divScheme is applied to this term. Instead this term needs to be included with a 
gradient scheme discretization. Gauss linear is the most common scheme used with this term. 

Subdictionary: laplacianSchemes 

This subdictionary contains discretization information for the laplacian terms. 

Gauss linear corrected has been the standard scheme used. Limiting can be used {Gauss 
linear limited 0.0 = uncorrected and Gauss linear limited 1.0 = corrected). The correction refers 
to treatment of non-orthogonal terms. An uncorrected solution (Gauss linear limited X.X with 
X.X< 1 will not converge to the same, more accurate, solution as Gauss linear corrected). 

Subdictionary: interpolationSchemes 

This subdictionary contains information on interpolation that is usually from cell center 
to cell face. 

Linear has been the standard scheme used; however, reconCentral scheme is being 
developed and is believed to be more accurate for meshes with significant non-orthogonality 
(unstructured meshes). 

Subdictionary: snGradSchemes 

This subdictionary contains information on surface normal gradient terms. This term 
specifies the portion of the gradient at a cell's face that is normal to the face. 

corrected has been the standard scheme used for this subdictionary and other schemes 
have not been used significantly. 

Subdictionary: fluxRequired 

This subdictionary contains information for variables whose flux is calculated in the 
application. 

The flux is required for pressure (p and pd) for most calculations, because a pressure 
equation is solved. Thus the default is usually set to no and the variable p ox pd is specified in 
the subdictionary, so that the flux is calculated for the pressure. 

fvSolution 

Dictionary that contains algorithm and linear system solvers information, such as solver 
settings and tolerances for convergence. The segregated solver variables and solution algorithms 
will vary with choice of problem solver executable (i.e. simpleFoam and interFoam require 
different settings). 

solvers contains the linear system of equation algorithms and tolerances for all the 
variables (OpenFoam uses a segregated solver). 

The common linear solvers tested and used are conjugate gradient solvers (PCG/PBiCG) 
and multi-grid solvers (GAMG/AAMG). 

Many tolerance settings have been used, but common values tested have been: 

P - tolerance le-10; relTol 0.01; and minlter = 1; 

U, gamma, and turbulent quantities - tolerance le-07; relTol 0.0; and minlter = 1; 
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The tolerance criterion is satisfied when the residual for the linear solver reaches the 
prescribed value. The relTol criterion is satisfied when the linear solver residual has dropped by 
the order of magnitude specified by: 1.0/relTol (i.e. relTol = 0.01 corresponds to the residual 
dropping two orders of magnitude or 10"). 

Note: be sure to use the minlter=l; command for all the linear solvers, as some solution 
tolerances may be set such that variables will stop iterating prematurely in the solution process, 
thus leading to inaccurate solutions that may look OK. 

Pressure algorithms (SIMPLE and PISO) - 

For simpleFoam (steady state, single phase, RANS solver) the solver variables needed are 
p, U, turbulent quantities (nuTilda for SA, k and omega for SST or WKO, k and epsilon for k- 
epsilon, etc.). 

The pressure algorithm should be SIMPLE, which includes: 

nNonOrthogonalCorrectors #;  Where the #  selected  will determine  the number of 
additional pressure solver loops. For example, for a value of # = 1, the solver will iterate over the 
pressure equation twice. For runs with meshes of good quality these additional loops are not 
needed. However, for meshes containing a lot of skew or nonOrthogonality, values between 1 
and 3 will add stability (as well as additional computational time) to the solution. 

nCorrectors? 

pRefCell and pRefValue must both be set or errors will occur. These values represent 
what the reference pressure value (most likely free-stream) and a cell number where this value 
occurs (a cell located in the free stream). All previous runs have used values of 0 for both 
without problem. 

For unsteady and pseudo time-marching steady solvers like interFoam and 
ransNavylnterFoam 

The pressure algorithm should be PISO, which includes: 

nNonOrthogonalCorrectors #; ... 

relaxation Factors contains the under-relaxation values for all the linear solver variables 
(U,p,pd,omega,k,gamma, etc.). The relaxation factors correspond to : 

0.0= Fully relaxed 

0.0 < # < 1.0 = variable under-relaxation 

1.0 = No relaxation 

For all implicit and most explicit runs, under-relaxation should be used on all variables to 
varying degrees. The pressure terms (p for simpleFoam, pd for other solvers) require more 
under-relaxation than other variables and this value is usually very important to solution stability. 
It is not uncommon to start a calculation out with a value of 0.1 or 0.2 and wait for the initial 
solution to develop and then ramp the value up progressively to 0.3. The velocity (U) usually 
starts around 0.5 and ramps up to 0.7 or 0.8 as the solution stabilizes. The turbulent quantities 
and gamma usually affect the solution startup less and typical values are 0.6 and 0.7-0.8 
respectively. 
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Appendix B: Utility Programs 

Several programs have been written to simplify post-processing NavyFOAM output data. 
Descriptions of their use are given here. 

dataFunkyFieldComparison 

Description 

This utility reads the scalar and vector volume field from FOAM numerical solution 
data files and compares them with the analytic solutions specified by a dictionary file named 
funkyFieldsDict stored under directory $CASE_DIR/system. The utility will first match the field 
names specified in funkyFieldsDict with those stored in the solution files and then calculate the£„ 

and L2 norm of the error and send the report to standard output (stdout). The error will only be 
calculated if the field name is found in both funkyFieldsDict and solution files. 

This utility is part of NavyFOAM. 

Usage 

The command line usage looks like 

dataFunkyFieldComparison [-case dir] [-time time] [-latestTime] 

The optional options are 

-case dir: specifies the case directory; 

-time time: selects the time step; 

-latestTime: selects the latest time step. 

Without any option, the utility will read the data files for all time steps stored under the 
current case directory. 

Installation 

1) Create a working copy using svn checkout. The recommended local directory to 
checkout the package is 

NavyFOAM/applications/utilities/postProcessinq 

svn  checkout  svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev- 
rev995/NavyFOAM/applications/utilities/postProcessing/dataComparison 

2) Go to directory JdataCompahson/dataFunkyFieldComparison and compile the package: 

wmake 

The compiler may generate some warning message which can be ignored in this case. 
The generated executable file dataFunkyFieldComparison can be found in a user application binary 
file directory specified by $FOAM_USER_APPBIN. 

Warning: To compile this utility at least version 2.1 of Bison has to be installed. Check with 
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bison -V 

on the command line before trying to compile it. Go to http://www.Knu.org/software/bison' for 
more information regarding Bison. 

Expression Syntax 

The  example  below  shows  some  useful   expression  syntax.  The  most  complete 
documentation of the expression syntax is the source file for the Bison-grammar in the package: 

ValueExpressionParser.yy 
ValueExpressionL exer. II 

Example 

The dictionary file funkyFieldsDict used in a Taylor vortex test case is shown below: 

FoamFile 
{ 

version 2.0; 
format ascii; 
class dictionary; 
object funkyFieldsDict; 

I 
• ••a***************.****************** 

expressions 

( 
TaylorVortex Velocity 

1   ' 
field U; 
expression "vector(sin(pos().x)*cos(pos().y), -cos(pos().x)*sin(pos().y). 0)*exp(-0.2*time())"; 

I 
TaylorVortexPressure 

: 
field p; 
expression "0.25*(cos(2.*pos().x)+cos(2.*pos().y))*pow(exp(-0.2*time()),2)"; 

i 
I 

); 

The above dictionary file specifies the analytic solution of the Taylor-Green vortex 
problem: 

1 , 
/>(.v, vJ) = — (COS2JC + COS2>>)F"(0 

4 
u(x,y,t) = sin.x cosyF(t) 

v(.v, y,t) = -COSJC sin yF(t) 

with F(t) = e'2" and v = 0.1. 

Suppose we already have the solution files at time = 1 as the latest time step stored 
under $CASE_DIR/1. The command line 

dataFunkyFieldComparison -latestTime 
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will yield the output shown below: 

Time= 1 

volScalarField: p 

max error occurs at cell: 0 
maxErr = 0.000409110343 
rmsErr = 0.000137916310931 

volVectorField: U 

max error in magnitude occurs at cell: 12216 
maxErr = 6.79861100733e-05 
rmsErr = 2.44996079401 e-05 

max error in X-component occurs at cell: 7680 
maxErr = 3.4175343e-05 
rmsErr = 1.44738699513e-05 

max error in Y-component occurs at cell: 12217 
maxErr = 6.7017086e-05 
rmsErr = 2.1343033345e-05 

max error in Z-component occurs at cell: 5911 
maxErr = 0 
rmsErr = 0 

For a scalar volume field such as the pressure field, the maximum error (maxErr) and 
root-mean-squares error (rmsErr) are calculated as follows: 

maxErr = L„ (p" -/,„")= max (| A" - p"0, |) 
IS j <N,, 

rmsErr = L2(p" -p"a) = ijf-fiW "Plf 

where the subscript "0" denotes the analytic solution, the superscript "n" represents the n- 
th time step, and Np is the total number of cells for cell-centered finite volume method. 

For a vector volume field such as the velocity field, the maxErr and rmsErr are calculated 
for the vector magnitude: 

maxErr = ^(|K|"-|K0|")= max(||^r-|F0jr|) 

maEn = L2(\V\"-\?6n= l±.^(\V,\"-\V0J\"J 
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and for each component: 

jc-component 

maxErr = LJft' -«£) = max (|< -u"0j |) 
IS I S\(. 

rmsErr = = /,(«-- -<) = ]££<"<• -o
2 

^-component 

maxErr 

-L2(v
n- 

-<) = max(|v"- 
ISiS/V,. v.", 1) 

rmsErr = feS« -VoV2 

r-component 

maxErr = M"" -<) = max (Ivv" 
IS I <\r         ' -<D 

rmsErr = L2(w" -<)= .-]-£« - <;)
: 

An optional option -patches will be added to calculate the L„ and/., norm of the error in 
patch-internal-field (cells that directly connecting the patch) for specified patches. 

NavyFOAMToTecplot 

Description 

This utility reads the scalar and vector volume and boundary patch fields from FOAM 
numerical solution data files and converts them to Tecplot data files. 

This utility is part of NavyFOAM. 

Usage 

'(hull)' 

The command line usage looks like 

NavyFoamToTecplot [-region name] [-case dir] [-fields fieldsList] 
[-patches patchesList] [-time time] [-latestTime] 

The optional options are 
-region name: specifies the region name; 
-case dir: specifies the case directory; 
-fields fieldsList: specifies a list of fields to output, e.g. '(pi) gamma )\ or '(U)'; 
-patches patchesList:  specifies a list of patches to output, e.g. '(inlet outlet  wall)', or 

-time time: selects the time step; 
-latestTime: selects the latest time step. 

Without any option, the utility will read the data files for all time steps stored under 
the current case directory and convert the volume field to Tecplot data. 

56 



Installation 

1) Create a working copy using svn checkout. The recommended local directory to 
checkout the package is 

NavyFOAM/applications/utilities/postProcessing/dataConversion 

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-l .5-dev- 
revl745/NavyFOAM/applications/utilities/postProcessing/dataConversion 

/NavyFoamToTecplot 

2) Go to directory ,/dataConversion/NavyFoamToTecplot and compile the package: 

wmake 

The generated executable file NavyFoamToTecplot can be found in a user application 
binary file directory specified by $FOAM_USER_APPBIN. 

Output 

The output files can be found in $CASE_DIR/TecplotData, for example 

NavyFoamToTecplot -fields '(p U)' -patches '(hull)' -time 10 

will generate 10.dat and hull_10.dat in $CASE_DIR/TecplotData. 

NavyCellSetToTecplot 

Description 

This utility reads a user specified cellSet file in Vconstant/polymesh/sets/ and convert 
it to Tecplot data file. 

This utility is part of NavyFOAM. 

Usage 

The command line usage looks like 

NavyCellSetToTecplot <cellSetFileName> [-region name] [-casedir] 
[-patches patchesList] 

The mandatory argument is 
cellSetFileName: specifies the file name for the cellSet, e.g. waveDampingCells; 

The optional options are 

-region name: specifies the region name; 

-case dir: specifies the case directory; 
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-patches patchesList:   specifies a list of patches to output, e.g. '( inlet outlet wall )\ or 
•(hull)'; 

Installation 

1) Create a working copy using svn checkout. The recommended local directory to 
checkout the package is 

NavyFOAM/applications/utilities/postProcessing/dataConversion 

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-l .5-dev- 
revl745/NavyFOAM/applications/utilities/postProcessing/dataConversion 

/NavyCellSetToTecplot 

2) Go to directory ./dataConversion/NavyCellSetToTecplot and compile the package: 
i 

wmake 

The  generated  executable  file  NavyCellSetToTecplot can  be  found  in  a  user 
application binary file directory specified by $FOAM_USER_APPBIN. 

Output 

The output files can be found in $CASE_DIR/TecplotData, for example 

NavyCellSetToTecplot waveDampingCells -patches '(hull symmetry)' 

may generate waveDampingCells.dat in $CASE_DIR/TecplotData. The Tecplot data file 
waveDampingCells.dat should contain the following zones: 

ZONE T = volMesh 
... 
ZONE T = hull 

ZONE T = symmetry 
... 
ZONE T = waveDampingCells 

The first zone is the volume mesh. The next two zones are the surface mesh for the 
user specified patches. The last zone is a volume mesh for the cellSet. In Tecplot, the mesh 
of each zone can be plotted in different colors. 

NavyFaceSetToTecplot 

Description 

This utility reads a user specified faceSel file in ./constant/polymesh/sets/ and converts it 
to Tecplot data file. 

This utility is part of NavyFOAM. 

Usage 

The command line usage looks like 
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NavyFaceSetToTecplot <faceSetFileName> [-region name] [-case dir] 
[-patches patchesList] 

The mandatory argument is 

faceSetFileName: specifies the file name for the faceSet, e.g. skewFaces; 

The optional options are 
-region name: specifies the region name; 
-case dir: specifies the case directory; 
-patches patchesList:  specifies a list of patches to output, e.g. '( inlet outlet wall )\ or 

'(hull)'; 

Installation 

1) Create a working copy using svn checkout. The recommended local directory to 
checkout the package is 

NavyFOAM/applications/utilities/postProcessing/dataConversion 

svn checkout svn+ssh://blackwater/5700/NavyFOAM/IntegrationBranches/NavyFOAM-1.5-dev- 
revl745/NavyFOAM/applications/utilities/postProcessing/dataC on version 

/NavyFaceSetToTecplot 

2) Go to directory ./dataConversion/NavyFaceSetToTecplot and compile the package: 

wmake 

The generated executable  file NavyFaceSetToTecplot can be found  in a  user 
application binary file directory specified by $FOAM_USER_APPBIN. 

Output 

The output files can be found in $CASE_DIR/TecplotData, for example 

NavyFaceSetToTecplot skewFaces -patches '(hull symmetry)' 

may generate skewFaces.dat in $CASE_DIR/TecplotData. The Tecplot data file 
skewFaces.dat should contain the following zones: 

ZONE T = volMesh 

ZONE T = hull 

ZONE T = symmetry 

ZONE T = skewFaces 

The first zone is the volume mesh. The next two zones are the surface mesh for the 
user specified patches. The last zone is a surface mesh for the faceSet. In Tecplot, the mesh 
of each zone can be plotted in different colors. 
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Appendix C: icoFoam Lid Driven Cavity Tutorial 

This tutorial involves using the laminar, transient, incompressible solver for a 2-D 
cavity. The cavity consists of 4 walls, where the top wall is moving, and the other walls are 
stationary. First, we will go over pre-processing and case setup, then we will run the test case, 
and finally we will look at some post-processed results. 

For more detailed information on the OpenFOAM code and settings consult the User's 
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf. 

Pre-Processing and Case Setup 

Upon looking in the case directory (screen capture below) you will notice that there are 
directories labeled system and 0, and a file named transportProperties. There is also a file 
labeled 2D cavity allCoarseStr.cas, which is a mesh exported from Gridgen in Fluent ASCII 
double precision format. We will discuss the existing files and directories later, but now we need 
to import the fluent .cas file into OpenFoam. This will be done using the command 
fluentMesh To Foam. 

[kdelaneytiRetech allCoarseStruct]$  1 
total 1.2M 
-rw-n»-r— 
drwxrwxr-x 
-rw-r  
drwxr-xr-x 

1 kdelaney kdelaney 1.2M Feb 19 12:31 2D_cavity_allCoarseStr.cas 
2 kdelaney kdelaney 4.OK Mar 9 16:53 system 
1 kdelaney kdelaney 886 Apr 1 08:35 transportProperties 
2 kdelaney kdelaney 4.OK Apr 1 08:35 0 

Mesh Input 

Now enter the fluentMeshToFoam command as seen below and view the output from 
the screen dump. The extra "| tee conversionLog" is not essential and is only included to record 

61 



the screen dump in a file named conversionLog. Your output should be the same as the screen 
captures. 

There is a lot of information on the screen dump, most of which is self explanatory. The 
most important part to notice is the last two lines of text in the screen dump which tell you that 
the mesh information has been written into a directory named poly Mesh inside a newly created 
directory named constant. Finally the command ends successfully with the "End." statement. 
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[kdelaneySRetech allCoarseStruct1$ fluentMeshToFoan 2D_cavity_allCoarseStr.cas | tee conversionLog 
/. .\ 

\\     /  F ield        | OpenFOAH: The Open Source CFD Toolbox 
\\   /  0 peration    I Version:  1.5-dev 
\\  /   A nd          I Web:     http://www.OpenF0AH.org 
\\/    M anipulation  I 

\. ./ 
Exec : fluentMeshToFoan 2D_cavlty_allCoarseStr.cas 
Date : Mar 09 2010 
Tine : 16:40:45 
Host : Retech 
PID : 5119 
Case : /hone/kdelaney/NavyFoan_runs/run/flat_plate/novingWallCavity/allCoarseStruct 
nProcs : 1 

//********   .......   .   ....// 
Create tine 

Reading header: "exported fron Cridgen 15.14R1" 
Dinension of grid: 3 
Nunber of points: 9522 
nunber of faces: 18632 
Nunber of cells: 4624 
Reading points 
Other readCellCroupData: 2 1 1210 1 4 
Reading uniforn cells 
Read zonel:2 nane:fluid patchTypelD:fluid 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
.Reading uniforn faces 
Read zonel:3 nane:interior-3 patchTypelD:interior 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
.Reading uniforn faces 
Read zonel:4 nane:Inlet-4 patchTypeID:wall 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
Reading uniforn faces 

Read zonel:5 nane:Top-5 patchTypeID:wall 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
Reading uniforn faces 

Read zonel:6 nane:side_l-6 patchTypeID:wall 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
Reading uniforn faces 
Read zonel:7 nane:0utlet-7 patchTypeID:wall 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
Reading uniforn faces 

Read zonel:8 nane:Botton-8 patchTypeID:wall 
Reading zone data 
Enbedded blocks in connent or unknown: ( 
Found end of section in unknown:) 
.Reading uniforn faces 

(screen output continues on the next page...) 
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Read zonel:9 nane:side_2-9 patchTypeID:wall 
Reading zone data 

FINISHED LEXING 

dinension of grid: 3 
Creating shapes for 3-D cells 
Building patch-less nesh...—> FOAM Warning : 

From function polyHesh::polyHesh(... construct from shapes., 
in file neshes/polyMesh/polyMeshFronShapeMesh.C at line 581 
Found 9520 undefined faces in nesh; adding to default patch. 

done. 

Building boundary and internal patches. 
Creating patch 0 for zone: 
Creating patch 1 for zone: 
Creating patch 
Creating patch 
Creating patch 
Creating patch 
Creating patch 

for zone: 
for zone: 
for zone: 

3 start: 
4 start: 
5 start: 
6 start: 
7 start: 

Patch interior-3 

1 end: 9112 type: interior nane: interior-3 
9113 end: 9180 type: wall nane: Inlet 4 
9181 end: 9248 type: wall nane: Top-5 
9249 end: 13872 type: wall nane: side_l-6 
13873 end: 13940 type: wall nane: Outlet-7 

for zone: 8 start: 13941 end: 14008 type: wall nane: Botton-8 
for zone: 9 start: 14009 end: 18632 type: wall nane: side_2-9 
is internal to the nesh and is not being added to the boundary. 

Adding new patch Inlet-4 of type wall as patch 0 
Adding new patch Top-5 of type wall as patch 1 
Adding new patch side_l-6 of type wall as patch 2 
Adding new patch 0utlet-7 of type wall as patch 3 
Adding new patch Botton-8 of type wall as patch 4 
Adding new patch side_2-9 of type wall as patch 5 

Default patch type set to enpty 

Writing nesh... to "constant/polyMesh" done. 

End 

constant/ directory and the createPatch Command 

All of the mesh geometry details are stored in the constant/polyMesh directory, 
boundary file is typically the only one in polyMesh directory that gets edited. 

The 

Now open up your constant/polyMesh/boundary file, which contains all of the 
information for surfaces that were imported from your mesh. It should look like the screen 
capture seen below. 

The information at the top of the file (under the FoamFile header) gives a description of 
the file (version, format, class, etc.) and is most likely only useful to more experienced users, but 
at the very least it is always useful as a label to let you know where you are. Further down the 
file you can see that 6 surfaces (Inlet-4, Top-5, etc.) were imported with the same boundary 
names that were created in Gridgen. Each surface is described by the type of OpenFoam surface, 
nFaces and startFace. Only the type is of concern to the user at this stage and that will be 
discussed in more detail later on. 
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• •_ C++ -«  
========= I 
\\     / F ield       I OpenFOAM: The Open Source CFD Toolbox 
\\   /  0 peration    | Version:  1.5-dev 
\\ /   And         I Web:     http://www.OpenFOAM.org 
\\/    M anipulation  | » v 

FoanFile 

{ 
version 2.0; 
format ascii; 
class polyBoundaryMesh; 
location "constant/polyMesh"; 
object boundary; 

Inlet-4 

{ 
type wall; 
nFaces 68; 
startFace 9112; 

} 
Top-5 

{ 
t ype wa 11; 
nFaces 68; 
startFace 9180; 

) 
side_l-6 

{ 
type wall; 
nFaces        4624; 
startFace      9248; 

} 
Outlet-7 

{ 
type wall; 
nFaces        68; 
startFace     13872; 

} 
Botton-8 

{ 
type wall: 
nFaces        68; 
startFace      13940; 

} 
side_2-9 

{ 
type wall; 
nFaces        4624; 
startFace      14008; 

} 

//  A************************************************************************   // 
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Often times the boundary file needs to be altered from what is originally created during 
the import process. For this case we need to edit the type of surface for some surfaces, and we 
would like to group certain surfaces together to avoid redundancy and make life easier. 

First we will group some of the surfaces together for ease of book-keeping. To group 
surfaces together, we use the createPatch command. For now let's say that we want to create a 
group of surfaces for what will be: the moving lid {movingWall), the stationary walls 
{fixedWalls), and the 2-D surfaces on the front and back (frontAndBack). The file that allows us 
to group surfaces is called createPatchDict and it is located in the system directory. 

If you open your system/createPatchDict file you will notice that it needs to be edited. 
Again, there is detailed information about this dictionary file underneath the FoamFUe header, 
and can be used as a reference to the user. Underneath the FoamFUe section are the 
matchToTolerance and pointSync commands which are not important right now and should be 
left as is. Next, you will see a patches section, which is where we will do our editing to join 
surfaces under one boundary name and type. 

The user should edit their createPatchDict file patchesQ section to look like the screen 
capture on the next page. The first patch is essentially renaming the Top-5 boundary to 
movingWall, while leaving the type as wall. This is equivalent to simply changing the name in 
the original constant/poly Mesh/boundary file, but was done here for educational purposes. The 
second patch will group the Inlet-4, Bottom-8, and Outlet-7 surfaces into one boundary named 
fixedWalls, and this new boundary will remain a type wall. Lastly, the side_l-6 and side_2-9 
surfaces will be combined to frontAndBack and this new boundary will be of type empty. The 
empty patch type is required for ALL 2-D surfaces. 

Now we are ready to combine the surfaces, but first it is generally a good idea to copy 
our constant directory before we combine our surfaces, so there is always a reference. So for 
Linux users, simply: 

» cp   r constant origconstant 

to copy our reference constant folder to orig_constant. Then in the case directory enter 
"createPatch" in the command line. The resulting screen dump should look like the following 
screen capture. 
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/ - -*\ 
========= I 
\\     /  F ield        | OpenFOAM: The Open Source CFD Toolbox 
\\   /  0 peration    | Version:  1.0 
\\  /   A nd          I Web:     http://www.openfoan.org 
\\/           M anipulation  | 

\-  

FoanFile 

{ 
version 
format 

root 
case 
instance 
local 

class 
object 

2.0; 
ascii; 

"/hone/penfold/nattijs/foan/mattijs2.1/run/icoFoan" 
"cavity"; 
"system"; 

dictionary; 
createPatcheDict; 

// * * ****** ***** *  *  * // 

// Tolerance used in matching faces. Absolute tolerance is span of 
// face tines this factor. 
natchTolerance 1E-3; 

// Do a synchronisation of coupled points. 
pointSync true; 

// Patches to create. 
// If no patches does a coupled point and face synchronisation anyway. 
patches 

( 

nane novingWall; 
type wall; 
constructFron patches; 
patches ( Top-5 ); 

nane fixedWalls; 
type wall; 
constructFron patches; 
patches ( Inlet-4 Botton-8 Outlet-7 ); 

nane frontAndBack; 
type enpty: 
constructFron patches; 
patches (side_l-6 side_2-9 ); 

u 
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[kdelaneyGRetech allCoarseStruct]$ cp -r constant/ orig_constant 
[kdelaneyORetech allCoarseStruct]$ 
[kdelaneySRetech allCoarseStruct]$ 
[kdelaneyflRetech allCoarseStruct]$ 
[kdelaneytfRetech allCoarseStructjj 
[kdelaney<9Retech allCoarseStruct]$ createPatch 
/*  

I \\ 
I \\ 
I  \\ 
I   \\/ 
V  
Exec   : 
Date 
Tine 
Host 
PID : 
Case : 
nProcs : 

/ 

F ield 
0 peration 
A nd 
M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web:     http://www.OpenFOAM.org 

•/ 
createPatch 
Mar 09 2010 
16:53:16 
Retech 
51S8 
/hone/kdelaney/NavyFoan_runs/run/flat_plate/novingWallCavity/allCoarseStruct 
1 

Create tine 

Reading createPatchDict. 

Using relative tolerance 0.001 to natch up faces and points 

Create poly-Mesh for tine = 0 

Adding new patch novingWall of type wall as patch 6 
Adding new patch fixedWalls of type wall as patch 7 
Adding new patch frontAndBack of type enpty as patch 8 

Moving faces fron patch Top-5 to patch 6 
Moving faces fron patch Inlet-4 to patch 7 
Moving faces fron patch Botton-8 to patch 7 
Moving faces fron patch 0utlet-7 to patch 7 
Moving faces fron patch side_l-6 to patch 8 
Moving faces fron patch side_2-9 to patch 8 

Doing topology nodification to order faces. 

Synchronising points. 
Points changed by average:0 nax:0 

Renoving patches with no faces in then. 

Renoving enpty patch Inlet-4 at position 0 
Renoving enpty patch Top-5 at position 1 
Renoving enpty patch side_l-6 at position 2 
Renoving enpty patch Outlet-7 at position 3 
Renoving enpty patch Botton-8 at position 4 
Renoving enpty patch side_2-9 at position 5 
Renoving patches. 
Writing repatched nesh to 0.005 

End 

• // 
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You will notice that the second to last line states "Writing repatched mesh to 0.005". The 
createPatch command will write the new patched surface information into a directory whose 
name is the first time step output of your future run, which in this case is a 0.005. 

So now you need to get rid of the old constant directory and move the new 0.005 
directory to constant In Linux this would be accomplished by: 

» mv constant origconstant 

» mv 0.005 constant 

Now the transportProperties file needs to be placed in the constant directory. The 
transportProperties file must ALWAYS be present in the constant directory. In Linux this 
would be accomplished by: 

» mv transportProperties constant/ 

Now if you open the constant/polyMesh/boundary file it should have the correct number 
of patches, names, and types. Your new boundary file should look like the screen capture on the 
next page. 
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• *- C++ -*  

=========        I 
\\     / F ield        | OpenFOAM: The Open Source CFD Toolbox 
\\   /  0 peration    | Version:  1.5-dev 
\\ /   A nd         | Revision: exported 
\\/    M anipulation | Web:     http://www.OpenFOAM.org 

\*  

FoawFile 

{ 

// 

3 
( 

version 
format 
class 
location 
object 

2.0; 
ascii; 
polyBoundaryHesh; 
"polyMesh"; 
boundary; 

// 

novingWall 
{ 

type 
nFaces 
startFace 

} 
fixedWalls 
{ 

type 
nFaces 
startFace 

) 
frontAndBack 
{ 

type 
nFaces 
startFace 

wall: 
68; 
9112; 

wall; 
204; 
9180: 

empty; 
9248; 
9384; 

//  *•**•* * -fr •** -t ************** * * **-*•**•»****************************< *************   // 

Now we have the geometry imported and named as we want for the run. A good next step 
is to export the geometry into a visual package (EnSight, ParaView, etc.) and make sure that all 
surfaces are grouped and labeled correctly. To export the geometry, use foam ToEnsight for 
EnSight, foamToVTK for ParaView, and no additional command is needed for ParaFoam. So 
now take a minute or two and inspect your geometry in your package of choice. Your geometry 
should look like the below figure, with the appropriate surface labels. 
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Cavity geometry as seen in EnSight 

Material Properties 

The next step is to set up the material properties for the fluid. For the icoFoam solver, 
only the kinematic viscosity is required in the constant/transportProperties dictionary file. Open 
the transportProperties file, it should look like the screen capture below. No editing is 
necessary, just note that kinematic viscosity is always set in transportProperties. 

0 --  C++ 

V 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5 
Web:     http://www.OpenFOAM.org 

-*\ 

7 
FoamFile 
{ 

version    2.0; 
forrat     ascii; 
class     dictionary; 
object     transportProperties; 

} 

nu nu [0 2 -1 0 0 0 0] 0.01; 

//  ******************************************* ****************************** // 
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The kinematic viscosity, nu, is entered in as: 

nu       nu [0 2-1 0 0 0] 0.01; 

where [0 2-1 0 0 0 0] sets the units based on [Mass Length Time Temperature Quantity Current 
Luminous intensity]. The kinematic viscosity dimensions are LengthVTime or in SI units: mVs. 
The value of the kinematic viscosity is set to 0.01. Remember that this value must always be 
consistent with the Reynolds number, 

Re = UL/nu 

0/ directory (Initial and Boundary Conditions) 

Now we turn our attention to the initial and boundary conditions, which are stored in the 
0/ directory. 

For the icoFoam solver only U and/? files are needed in the 0/directory. 

Open the 0/U file; it should look like the screen capture below. 
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0 - 
\\     / F ield 
\\   / 0 peration 
\\ / And 
\\/ M anipulation 

 *_ C++ -*  

OpenFOAM: The Open Source CFD Toolbox- 
Version:  1.5 
Web:     http://wvm.OpenFOAM.org 

*\ 

\*  
FoamFile 

{ 
version 
format 
class 
object 

) 
/ /  *  *  *  * i> 

2.0; 
ascii; 
volVectorField; 
U; 

******************************   rr* // 

dimensions [01-10000]; 

internalField  uniform (0 0 0); 

boundaryField 
{ 

movingWall 

type 
value 

fixedWalls 

type 
va lue 

frontAndBack 

fixedValue; 
uniform (1 0 0); 

fixedValue; 
uniform (0 0 0); 

type empty; 

//  ********A********************4****************************************ii*  // 

In the 0/U file notice: 

U is a vector field quantity. All U values must be set in vector format, (XXX). 

The U dimensions must match the variable by M,L,T,-- so velocity is [0 I -I 0 0 0 0] 

The "internalField" sets the initial flow field condition for U. For this case the fluid is 
initially at rest (Ux,Uy,Uz = 0) 
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The "boundaryField" sets velocity boundary conditions for ALL surfaces. All surfaces 
must be included with proper BC's. All surface names must match the 
constant/poly Mesh/boundary surface name exactly. The order of surfaces is not important, but 
the names must match identically. 

The velocity boundary conditions for the three surfaces are as follows: 

The movingWall is set with 

type     fixedValue; 

value   uniform (1 0 0); 

for the top lid to move with velocity of Ux=\. 

The fixedWalls are set with 

type     fixedValue; 

value   uniform (0 0 0); 

to apply the no-slip boundary condition to the walls. 

The frontAndBack surfaces are set with 

type     empty; 

because they are the 2-D boundaries. ALL 2-D boundaries must have type set to empty. 

Again, the order of the surfaces in the 0/... files doesn't matter, but the names and types 
MUST be consistent with those listed in the constant/polyMesh/boundary file. 

Now open the 0/p file, it should look like the screen capture below. 
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\*  
FoamFile 

{ 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

 *_ C++ -*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5 
Web:     http://www.OpenFOAM.org 

 *\ 

1 
II 

version 
format 
class 
object 

2.0; 
ascii; 
volScalarField; 

p; 

************************************ * // 

dimensions     [02-20000]; 

internalField  uniform 0; 

boundaryField 

movingWall 

type zeroGradient; 

fixedWalls 

type 

frontAndBack 

type 

zeroGradient; 

empty; 

// // *************************************** **************** ******** ********** 

In the 0/p file notice: 

p is a scalar field quantity. All p values must be set as a scalar, X, value. 

The p dimensions must match the variable by M,L,T,... so pressure is [0 2 -2 0 0 0 0], 
because in icoFoamp is actually the pressure divided by the density, thus the SI units would be 
m2/s2. 

The "internalField" sets the initial condition for p. For this case (and most others) we do 
not care about the absolute value of the pressure, p, so we just set it to 0 for ease. 
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The boundary Held sets pressure boundary conditions for ALL surfaces. All surfaces 
must be included with proper BC's that are consistent with the constant/polyMesh/boundary 
surfaces. 

The pressure boundary conditions for the three surfaces are as follows: 

The movingWall is set with 

type     zeroGradient; 

for the moving wall. 

The fixedWalls are set with 

type     zeroGradient; 

for the no-slip wall. 

The frontAndBack surfaces are set with 

type     empty; 

because they are the 2-D boundaries. ALL 2-D boundaries must have type set to empty. 

system/ directory (Solver Settings) 

Now we will look at some of the solver settings and controls that are located in the 
system/ directory. We will focus on the controlDict, fvSolution, and fvSchemes files. We 
already used the createPatchDict to merge multiple surfaces. 

Open the system/controlDict dictionary file. It should look like the screen capture below. 
The controlDict file sets all of the run-time parameters and output information. This is also 
where run-time libraries and functions, such as force outputs over a patch and dynamic mesh 
libraries are specified. 
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0 
\\     / F ield 
\\   /  0 peration 
\\    /        A nd 
\\/    M anipulation 

\*  

FoanFile 

{ 
version 
fornat 
class 
object 

} 
//  ************ 

 •_ C++ _*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5 
Web:     http://www.OpenFOAM.org 

\ 

2.0; 
ascii; 
dictionary; 
controlDict; 

* * * * ***** 

application icoFoan: 

startFron      startTine; 

startTine 0: 

stopAt endTine; 

endTine 0.3; 

deltaT 0.00001; 

writeControl tineStep; 

writelnterval 3000; 

purgeWrite 0; 

writeFornat ascii; 

writePrecision 6; 

writeConpression uncompressed; 

t ineFornat     genera 1; 

tinePrecision  6; 

runTineModifiable yes; 

// ************* ******************************4r***************************** // 

The solver specified in application input does not matter. The solver is specified on the 
command line or in a script file. Thus, this is an insignificant line for our purposes. 

The solver settings are fairly obvious, and more detail is provided on page U-108 of the 
User's Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdO- For now we will only 
cover a broad view of the file. 
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We know that icoFount is a transient solver. We see that we will run the simulation from 
0 to 0.3 seconds in time steps of 0.00001 seconds with the solver writing output information 
every 3000 time steps (t=0.03, 0.06, 0.09, ...). The data will be written in ASCII format in 
directories that are denoted by time 6 digits long. Notice that runTimeModifiable is chosen to 
yes, this means that we can make changes to the controlDict in the middle of a run, and they will 
be adjusted on the fly, as opposed to having the settings set in stone for the whole calculation. 

One important note is that to start a calculation from a previous solution the startFrom 
entry must be switched to latestTime, and desired start time information (directory and BC's) 
must be present in the case directory. 

Now open the system/fvSolution dictionary file. It should look like the screen capture on 
the next page. 

The fvSolution file contains linear solver information as well as solver algorithm settings. 

The solvers section contains linear solver settings for pressure and velocity. Note that for 
this case we are using preconditioned conjugate gradient solvers (PCG for symmetric matrices 
and PBiCG for asymmetric matrices), but we also commonly use multi-grid solvers (GAMG, 
AAMG, etc.). The solver tolerance and relative tolerance settings are not important right now. 
The ntinlter command sets a minimum number of times the linear solver will iterate on a 
variable. It is usually recommended that the user always set a minimum number of iterations > 0 
to prevent the solver from prematurely not solving for a variable. 

Below the solvers section are pressure-implicit split-operator (P/SO) algorithm control 
settings. These PISO settings are not particularly useful to the user at this time, so only a broad 
view of what each setting means is given. Also, note that the PISO algorithm must be used for 
all transient solvers and the SIMPLE algorithm must be used for all steady-state solvers. For this 
case we have nCorrectors set to 2, which means that we will solve the pressure equation twice 
per time iteration. The value of nNonOrthogonalCorrectors is set to 0. This parameter is not 
particularly important to the user at this moment. Notice that we have set cell number 0 as our 
reference cell, where the reference value is 0. This is the reference pressure for the 
incompressible solver. 
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0- 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

 *_ C++ -*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5 
Web:     http://www.OpenFOAM.org 

\*  
FoanFile 
{ 

-*\ 

version 
foriiat 
class 
object 

// * 

2.0; 
ascii; 
dictionary; 
fvSolution; 

******************************* // 

solvers 
{ 

P PCG 
[ 

preconditioner DIC; 
tolerance le-06; 
relTol 0; 
ninlter 5: 

1: 

0 PBiCG 
{ 

preconditioner DILL); 
tolerance le-05; 
relTol 0; 
minlter 5; 

}; 
} 

PISO 
{ 

nCorrectors    2; 
nNonOrthogonalCorrectors 0; 
pRefCell      0; 
pRefValue     0; 

// ** *********************** !f******** + ****A***********-*************':»*****-*7+- U 

Now open the system/fvSchemes dictionary file. It should look like the screen capture 
below. 

Many of the fvSchemes settings are not particularly useful to the user at this time, so only 
a broad view of what each setting means is given. For more detail on these settings consult page 
U-l 10 of the User's Guide. More detail of the discretization settings is given in the simpleFoam 
and rasInterFoam tutorials. 
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/* »_ C++ -* *\ 

I \\     / F ield 
|  \\   /  0 peration 

\\ / 
w/ 

oamFile 

version 
format 
class 
object 

A nd 
M anipulation 

2.0; 
ascii; 
dictionary; 
fvSchenes; 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5 
Web:     http://www.0penF0AM.org 

A*********************** ******** // 

ddtSchenes 

default 

gradSchemes 

default 
grad(p) 

divSchemes 

default 
div(phi.U) 

aplacianSchenes 

default       none; 
laplacian(nu,U) Gauss linear corrected; 
laplacian((l|A(U)),p) Gauss linear corrected; 

Euler; 

Gauss linear; 
Gauss linear; 

none; 
Gauss linear; 

nterpolationSchenes 

default        linear; 
interpolate(HbyA) linear; 

snCradSchenes 

default 

luxRequired 

default 
p: 

corrected; 

n /  ******************&*+***************************************************< // 

SO 



The fvSchemes file sections declares the following settings: 

ddt -> time discretization 

gradSchemes -> gradient term discretizations 

divSchemes -> divergence terms discretization 

laplacianSchemes -> Laplacian terms discretization 

interpolationSchemes -> interpolation of values from cell centers to cell face centers 

snGradSchemes -> surface normal gradient evaluation at cell faces 

JluxRequired -> lists fields where flux is generated in the application 

For all of the fvSchemes fields a default value can be specified, or default can be set to 
none which means that the user must enter all values for the appropriate variables themselves. 

Running icoFoam 

Now we are ready to run. Type icoFoam on the command line like the screen capture 
below, and hit "ctrl+c" to take a look at the first few iterations (piping the screen dump to a log 
file by using "icoFoam | tee log" is another option). 
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[kdelaneyORetech tut_allCoarseStruct)$ icoFoam 
/.  

 -/ 

\\ / F icld 
\\   /  0 peration 
\\    /        A nd 
\\/    M anipulation 

\*  
Exec  : icoFoam 
Date  : Jun 30 2010 
Tire  : 14:53:06 
Host   : Retech 
PID   : 20508 
Case  : /home/kdelaney/NavyFoam_runs/run/flat_plate/iiovingl«lallCavity/tut_allCoarseStruct 
nProcs : 1 

 «\ 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web:     http://mm.OpenFOAM.org 

// /; .................................. , 
Create time 

Create nesh for tine = 0 

Reading transport Properties 

Reading field p 

Reading field U 

Reading/calculating face flux field phi 

Starting tine loop 

Tine = le-05 

Courant Number mean: 0 max: 0 velocity magnitude: 0 
PBiCC:  Solving for Ux. Initial residual =  1, Final residual = 1.68372e-20. No Iterations 5 
PBiCC: Solving for Uz: solution singularity 
PCG: Solving for p. Initial residual = 1, Final residual = 6.77855e-07. No Iterations 138 
tine step continuity errors : sun local = 1.14833e-15. global = i.92084e-26. cumulative = 3.92084e-26 
PCC:  Solving for p. Initial residual = 0.0407237. Final residual = 8.83925e-07, No Iterations 126 
tine step continuity errors : sun local = 3.57796e-15. global = -5.09959e-25. cumulative = -4.7075e-25 
ExecutionTime -  0.13 s ClockTine = 0 s 

Tine = 2e-05 

Courant Number mean: 1.36506e-07 max: 9.7988e-05 velocity magnitude: 0.0362317 
PBiCG: Solving for Ux. Initial residual = 0.134603. Final residual = 1.07427e-21. No Iterations r. 
PBiCC:  Solving for Uz. Initial residual = 0.333103. Final residual • 8.02106e-21. No Iterations 5 
PCC: Solving for p. Initial residual = 0.100492. Final residual = 8.49585e-07. No Iterations 125 
time step continuity errors : sum local = 3.78654e-15. global • 3.849e-25. cumulative = -8.58504e-26 
PCC:  Solving for p. Initial residual = 0.0020439, Final residual = 9.96011e-07. No Iterations 112 
time step continuity errors : sum local = 4.8709e-15, global = 4.60384e-25. cumulative = 3.74534e-25 
ExecutionTime = 0.2 s ClockTine = 0 s 

Time = 3e-05 

Courant Number mean: 2.66818e-07 max: 0.000190662 velocity magnitude: 0.0705446 
PBICC: Solving for Ux. Initial residual = 0.0711115, Final residual = S.11184e-22. No Iterations 5 
PBiCC: Solvins for Uz. Initial residual = 0.196949. Final residual • 5.20581e-21. No Iterations 5 

Some observations from the first few iterations: 

You can see that the solver started from time equal to 0 seconds and is marching in 
increments of le-5 seconds. 

For each iteration the pressure equation is solved twice and the velocity equations are 
solved once. For each variable linear solver we can see the initial residual, final residual, and the 
number of iterations it took to drop from the initial to the final residual. We set all of these 
tolerances and iteration criteria in the system/fvSolution dictionary file. 

There are also Courant number and continuity error reports. 
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The best way to typically monitor the solution is to make sure that the velocity magnitude 
stays at a reasonable number, and make sure that initial pressure residuals are decreasing or are 
holding steady at an acceptable value. 

The last line of the time iteration produces execution and clock time information. This is 
useful in gauging the efficiency of your solution. 

Now let the icoFoam solver go until 0.5 seconds to get a converged solution. 

Post-Processing 

Notice that there are many time directories in your case directory. Each of these 
directories contains output information for their respective time step. 

To look at the post-processed results simply type the following commands, depending on 
the post-processing tool of choice: 

-> to look at the results in EnSight 

-> to look at the results in ParaView 

»foamToEnSight -latestTime 

»foamToVTK -latestTime 

where the command -latestTime is used to only look at the results from the last output time step. 
To look at the results for all time steps simply leave off the -latestTime command, and to look at 
the results for a specific time (ie 0.005) use -time 0.005. 

To look at the results in ParaFoam, no additional commands are needed, simply open 
ParaFoam in the case directory. 

Your results  should  look  like  the  velocity  magnitude  (Vmag)  and  axial   velocity 
(VmagfxJ) contours below. 
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Appendix D:  simpleFOAM Body-1 Tutorial 

This tutorial involves using the turbulent, steady, incompressible solver for a 3-D body- 
of-revolution, the Body-1. Only half the body is solved, as symmetry is assumed. The domain is 
non-dimensionalized by length, so all lengths in the domain are normalized by body length. First, 
we will go over pre-processing and case setup, then we will run the test case, and finally we will 
look at some post-processed results. 

For more detailed information on the OpenFOAM code and settings consult the User's 
Guide: http://foam.sourceforee.net/doc/Guides-a4/UserGuide.pdf. 

Pre-Processing and Case Setup 

Upon looking in the case directory (screen- capture below) you will notice that there are 
directories labeled system and 0, and a fde named transportProperties. There is a parallel 
processing script named oFOAM.scp. There is also a file labeled bodyl_Box_ASCU.fluent.cas, 
which is a mesh exported from Gridgen in Fluent ASCII double precision format. We will 
discuss the existing files and directories later, but now we need to import the fluent .cas file into 
OpenFoam. This will be done using the command fluentMesh To Foam. 

1 [delaneykQaitazon bodyUTutorial]* 
total 237M 

1 delaneyk users 1.6K Apr 
1 delaneyk users 4.6K Apr 
2 delaneyk users 80 Apr 
2 delaneyk users 81 Apr 
1 delaneyk users 658 Apr 

rw-r—r— 
rwxr-xr-x 
drwxr-xr-x 
drwxr-xr— 
rw-r—r— 
rw-r--r-- 1 delaneyk users 237M Apr 

8 15:17 transportProperties 
8 15:17 RASProperties 
8 15:17 system 
8 15:17 0 
8 15:17 oFOAM.scp 
8 15:31 bodyl_Box-ASCII.fluent.cas 

Mesh Input 

Now enter the fluentMeshToFoam command as seen below and view the output from 
the screen dump. Your output should be the same as the screen captures on the next pages. 

There is a lot of information on the screen dump, most of which is self explanatory. The 
most important part to notice is the last two lines of text in the screen dump which tell you that 
the mesh information has been written into a directory named polyMesh inside a newly created 
directory named constant. Finally the command ends successfully with the "End." statement. 
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[delaneykflanazon bodyl_TutorialJ$ fluentMeshToFoan bodyl_Box-ASCII.fluent.cas 
/. -\ 

\\     / F ield       | OpenFOAM: The Open Source CFD Toolbox 
\\   /  0 peration    | Version:  1.5-dev 
\\ /   A nd | Revision: exported 
\\/    H anipulation  | Web:     http://www.OpenFOAM.org v v 

Exec   : fluentMeshToFoan bodyl_Box-ASCII.fluent.cas 
Date  : Apr 08 2010 
Tine  : 15:31:37 
Host  : anazon.dt.navy.nil 
PID   : 19865 
Case  : /san/hone/delaneyk/NavyF0AM-1.5-dev-rev995/delaneyk-l.5-dev/run/bodyl/boundingBoxFar 
nProcs : 1 

/1  * + *-*#******»• + *•** + * + *•«***•»*****•*•• / / 

Create tine 

—> FOAM Warning : 
Fron function dlLibraryTable::open(const fileNaneA functionLibNane) 
in file db/dlLibraryTable/dlLibraryTable.C at line 86 
could not load /san/hone/delaneyk/NavyFOAM-1.5-dev-rev995/NavyF0AM/lib/linux64CccDPOpt/li 

ModelllprintCoeffsEv 
Dinension of grid: 3 
MNunber of cells: 2180547 
nunber of faces: 5106844 
Nunber of points: 860613 
Other readCellGroupData: a 1 2145c3 1 0 
Reading nixed cells 
Reading nixed faces 
Reading uniform faces 
Reading uniform faces 
Reading uniform faces 
Reading uniform faces 
Reading uniform faces 
Reading uniform faces 
Reading nixed faces 
Reading points 
Read zone2:10 nane:fluid patchTypelD:fluid 
Reading zone data 

Read zone2:8 nane:symmetry patchTypelD:symmetry 
Reading zone data 

Read zone2:6 name:outlet patchTypeID:pressure-outlet 
Reading zone data 

Read zone2:5 name:inlet patchTypelD:inlet-vent 
Reading zone data 

Read zone2:4 nane:farfield patchTypeID:pressure-far-field 
Reading zone data 

Read zone2:l name:bow patchTypeID:wal1 
Reading zone data 

Read zone2:2 name:midbody patchTypeID:wall 
Reading zone data 

Read zone2:3 nane:stern DatchTvDeID:wall 

(screen output continues on the next page...) 
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Reading zone data 

Read zone2:9 name:interior-faces patchTypelD:interior 
Reading zone data 

FINISHED LEXINC 

dimension of grid: 3 
Creating shapes for 3-D cells 
Building patch-less mesh...—> FOAM Warning : 

From function polyMesh::polyMesh(... construct from shapes...) 
in file iieshes/polyMesh/polyMeshFromShapeMesh.C at line 581 
Found 111916 undefined faces in nesh; adding to default patch. 

done. 

Building boundary and internal patches 
maxZonelD: 9 
Creating patch 0 for zone: 9 start: 
Creating patch 1 for zone: 1 start: 
Creating patch 2 for zone: 2 start: 
Creating patch 3 for zone: 3 start: 
Creating patch 4 for zone: 4 start: 
Creating patch 5 for zone: 5 start: 
Creating patch 6 for zone: 6 start: 
Creating patch 7 for zone: 

1 end: 4994928 type: 
4994929 end: 5001640 
5001641 end: 5013072 
5013073 end: 5035504 
5035505 end: 5037282 
5037283 end: 5037724 
5037725 end: 5038166 
5038167 end: 5106844 
the mesh and is not 

8 start: 
Patch interior-faces is internal to 
Adding new patch bow of type wall as patch 0 
Adding new patch midbody of type wall as patch 1 
Adding new patch stern of type wall as patch 2 
Adding new patch farfield of type patch as patch 3 
Adding new patch inlet of type patch as patch 4 
Adding new patch outlet of type patch as patch 5 
Adding new patch symmetry of type symmetry-Plane as patch 

Default patch type set to empty- 

Writing mesh... to "constant/polyMesh" done. 

End 

interior name: interior-faces 
type: wall name: bow 
type: wall name: midbody 
type: wall name: stem 
type: pressure-far-field name: farfi 
type: inlet-vent name: inlet 
type: pressure-outlet name: outlet 
type: symmetry name: symmetry 
being added to the boundary. 

Now run the checkMesh command for two reasons: 

• to make sure the mesh was imported correctly 
• to asses the quality of the mesh for the OpenFOAM solver 

Your checkMesh output should look like the screen captures on the next pages. 
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[delaneyk^anazon bodyl_Tutorial]$ checkMcsh 
/*  -*\ 

\\ 
w 
\\ / 
w 

\*  
Exec 
Date 
Tine 
Host 
PID 
Case 
nProcs 

/  F ield | OpenFOAM: The Open Source CFD Toolbox 
/  0 peration | Version: 1.5-dev 

A nd | Revision: exported 
M anipulation | Web: http://www.OpenFOAM.org 

V 
checkMesh 
Apr 08 2010 
15:36:20 
.111,1 zim.dt. navy .nil 
21145 
/san/hone/delaneyk/NavyF0AM-1.5-dev-rev995/delaneyk-1.5-dev/run/bodyl/boundingBoxFar 
1 

Create tine 
// 

--> FOAM Warning : 
From function dlLibraryTable::open(const fileNane& functionLibNane) 
in file db/dlLibraryTable/dlLibraryTable.C at line 86 

could not load /san/hone/delaneyk/NavyFOAM-1.5-dev-rev995/NavyFOAM/lib/linux64CccDPOpt/li 
ModelllprintCoeffsEv 
Create polyMesh for tine = constant 

Tine = constant 

Mesh stats 
points: 860613 
faces: 5106844 
internal faces :   4994928 
cells: 2180547 
boundary patches: 7 
point zones ii 

face zones: 0 
cell zones: II 

Nunber of cells of each type: 
hexahedra: 0 
prisns: 1379584 
wedges: 0 
pyramids: 0 
tet wedges: 0 
tetrahedra: 800963 
polyhedra: 0 

Checking topology... 
Boundary definition OK. 
Point usage OK. 
Upper triangular ordering OK. 
Face vertices OK. 
Nunber of regions: 1 (OK). 

Checking patch topology for multiply connected surfaces 
Patch Faces Points Su 
bow 6712 3459 ok 
nidbody 11432 5882 ok 
stern 22432 11490 ok 
farfield 1778 950 ok 
inlet 442 252 ok 
outlet 442 252 ok 

Surface topology 
(non-closed singly 
(non-closed singly 
(non-closed singly 
(non-closed singly 
(non-closed singly 
(non-closed singly- 

connected) 
connected) 
connected) 
connected) 
connected) 
connected) 

(Screen capture continues on next page... ) 
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symmetry 68678   50479   ok (non-closed singly connected) 

Checking geometry... 
This is a 3-D mesh 
Overall domain bounding box (-10 -10 0) (10 10 10) 
Mesh (non-empty) directions (1 1 1) 
Mesh (non-empty, non-wedge) dimensions 3 
Boundary openness (-1.71587e-18 -1.21515e-17 -S.8041e-16) Threshold = le-06 OK. 
Max cell openness = 5.13185e-14 OK. 
Max aspect ratio = 564.729 OK. 
Minimum face area = 5.88008e-10. Maximum face area = 1.24S94.  Face area magnitudes OK. 
Min volume = 6.96628e-14. Max volume = 0.421459.  Total volume = 4000.  Cell volumes OK. 
Mesh non-orthogonality Max: 61.1137 average: 9.70308 Threshold = 70 
Non-orthogonality check OK. 
Face pyramids OK. 
Max skewness = 1.25241 OK. 

Mesh OK. 

End 

There is a lot (probably too much) of information with the checkMesh screen dump. At 
the top, the Mesh stats section shows that the mesh has 2.18 million total cells/elements, and the 
Number of cells of each type section shows 1.38 million are prisms and 0.8 million are 
tetrahedral elements. Below that, we see that the topology checks out OK and that all the surfaces 
are correctly connected. 

Finally, the Checking geometry... section displays mesh quality statistics. This section 
gives a lot of information, but the most important parts are the aspect ratio, non-orthogonality, 
and skewness. For this case all check out OK, so we are free to proceed knowing the mesh is of 
high quality. 

Sometimes it is not possible to create a mesh without any high aspect ratio, non- 
orthogonal, or skewed cells. In fact, most meshes created will contain bad cells, and nin fine. 
However, at some point (which is not quantitatively clear) the mesh will be so poor it either 
won't run, or it will take a long time to run. There aren't exact guidelines on OpenFOAM mesh 
quality; it simply takes experience running various meshes. 

constant/ directory and the createPatch Command 

All of the mesh geometry- details are stored in the constant/poly Mesh directory. The 
boundary file is typically the only one in polyMesh directory that gets edited. 

Now open up your constant/polyMesh/boundary file, which contains all of the 
information for surfaces that were imported from your mesh. It should look like the screen 
capture seen below. 

The information at the top of the file (under the FoamFile header) gives a description of 
the file (version, format, class, etc.) and is most likely only useful to more experienced users, but 
at the very least it is always useful as a label to let you know where you are. Further down the 
file you can see that 7 surfaces (bow, midbody, etc.) were imported with the same boundary 
names that were created in Gridgen. Each surface is described by the type of OpenFoam surface, 
nFaces and startFace. Only the type is of concern to the user at this stage and that will be 
discussed in more detail later on. 
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V  
FoanFile 

{ 

ft 

7 
( 

\\   / 

w 

C++ 

/ F ield I OpenFOAM: The Open Source CFD Toolbox 
0 peration | Version: 1.5-dev 
A nd | Revision: exported 
M anipulation | Web: http://www.OpenFOAM.org 

-"\ 

version 2.0: 
fornat ascii; 
class polyBoundaryHesh: 
location "constant/polyMesh" 
object boundary: 

o 

bow 

{ 
type 
nFaces 
startFace 

idbody 

type 
nFaces 
startFace 

type 
nFaces 
startFace 

arfield 

type 
nFaces 
startFace 

nlet 

type 
nFaces 
startFace 

outlet 

type 
nFaces 
startFace 

synnetry 

type 
nFaces 
startFace 

II 

wall; 
6712; 
4994928; 

wall: 
11432; 
5001640; 

wall: 
22432; 
5013072; 

patch; 
1778; 
5035504; 

patch; 
442; 
5037282; 

patch; 
442; 
5037724; 

symietryPlane; 
68678; 
5038166; 

Often times the boundary file needs to be altered from what is originally created during 
the import process. For example, the hull might be imported as 5 different surfaces and you 
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would like to group them together as one surface. For this case we will group the separate hull 
surfaces together to avoid redundancy and make life easier. 

To group separate surfaces together, we use the createPatch command. For now let's say 
that we want to create a group of surfaces for what will be the hull. The file that allows us to 
group surfaces is called createPatchDict and it is located in the system directory. 

If you open your system/createPatchDict file you will notice that it needs to be edited to 
group the surfaces from constant/polyMesh/boundary. Again, there is detailed information about 
this dictionary file underneath the FoamFUe header, and can be used as a reference to the user. 
Underneath the FoamFUe section are the matchToTolerance and pointSync commands which 
are not important right now and should be left as is. Next, you will see a patches section, which 
is where we will do our editing to join surfaces under one boundary name and type. 

The user should edit their createPatchDict file patchesQ section to look like the screen 
capture on the next page. The only patch will group the hull, midbody, and stern surfaces into 
one boundary named hull, and this new boundary will remain a type wall. 

Now we are ready to combine the surfaces, but first it is generally a good idea to copy 
our constant directory before we combine our surfaces, so there is always a reference. So for 
Linux users, simply: 

>> cp -r constant origconstant 

to copy our reference constant folder to orig_constant. Then in the case directory enter 
"createPatch" in the command line. The resulting screen dump should look like the following 
screen capture. 
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0 
\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.0 
Web:     http://www.openfoan.org 

- / 

FoanFile 
1 

version 
fornat 

2.0; 
ascii; 

root 
case 
instance 
local 

"body 1"; 

class 
object 

dictionary; 
createPatcheDict 

II * * * ***** // 

// Tolerance used in matching faces. Absolute tolerance is span of 
// face tines this factor. 
natchTolerance 1E-3; 

// Do a synchronisation of coupled points. 
pointSync true; 

// Patches to create. 
// If no patches does a coupled point and face synchronisation anyway. 
patches 
( 

! 
nane hull; 

type wall; 

constructFron patches; 

patches (bow nidbody stern); 

): 

// -**•** V **-* ir*****<r***»4 ir***i****** + **********+*W**** fr*** + + ******* ***** // 
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[delaneykQanazon bodyl_Tutorial]$ 
[delaneyk'Sanazon bodyl_Tutorial]£ createPatch 
/•  

V  
Exec : createPatch 
Date : Apr 08 2010 
Tine : 15:46:37 
Host :   anazon.dt.navy.nl 
PID :  21526 
Case : /san/hone/delaneyk/NavyF0AM-1.5-dev-rev995/delaneyk-l.5-dev/run/bodyl/bounding! 
nProcs : 1 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version: 1.5-dev 
Revision: exported 
Web: http://wwv.OpenFOAM.org 

Create tire 

* * * + * * * * * * •* 
•7 

—> FOAM Warning : 
From function dlLibraryTable::open(const fileNane& functionLibNane) 
in file db/dlLibraryTable/dlLibraryTable.C at line 86 
could not load /san/hone/delaneyk/NavyFOAM-1.5-dev-rev995/NavyF0AM/lib/linux64CccDP( 

e8RASModelllprintCoeffsEv 
Reading createPatchDict. 

Using relative tolerance 0.001 to natch up faces and points 

Create polyMesh for tine = 0 

Adding new patch hull of type wall as patch 7 

Moving faces fron patch bow to patch 7 
Moving faces fron patch nidbody to patch 7 
Moving faces fron patch stern to patch 7 

Doing topology nodification to order faces. 

Synchronising points. 
Points changed by average:0 nax:0 

Renoving patches with no faces in then. 

Renoving enpty patch bow at position 0 
Renoving enpty patch nidbody at position 1 
Renoving enpty patch stern at position 2 
Renoving patches. 
—> FOAM Warning : 

Fron function forces::forces(const objectRegistryA obr, const dictionary* diet) 
in file forces/forces.C at line 78 
No fvMesh available, deactivating. 

Writing repatched nesh to 1 

End 
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You will notice that the second to last line states "Writing repatched mesh to /". The 
createPatch command will write the new patched surface information into a directory whose 
name is the first time step output of your future run, which in this case is //. 

So now you need to get rid of the old constant directory and move the new //directory to 
constant In Linux this would be accomplished by: 

» mv constant origconstant 

» mv 1 constant 

Now the transportProperties and RASProperties files need to be placed in the constant 
directory. The transportProperties and RASProperties files must ALWAYS be present in the 
constant directory when using simpleFoam. In Linux this would be accomplished by: 

» mv transportProperties constant/ 

» mv RASProperties constant/ 

Open the constant/polyMesh/boundary file and you will see that the three patches are 
now grouped together in the hull patch. 

Now we have the geometry imported and named as we want for the run. A good next step 
is to export the geometry into a visual package (EnSight, ParaView, etc.) and make sure that all 
surfaces are grouped and labeled correctly. To export the geometry, use foam ToEnsight for 
EnSight, foamToVTK for ParaView, and no additional command is needed for ParaFoam. So 
now take a minute or two and inspect your geometry in your package of choice. Your geometry 
should look like the Figure below, with the appropriate surface labels in the post-processor. 
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Material Properties 

The next step is to set up the material properties for the fluid. For the simpleFoam solver, 
only the kinematic viscosity is required in the constant/transportProperties dictionary file. Open 
the transportProperties file, it should look like the screen capture below. No editing is necessary, 
just note that kinematic viscosity is always set in transportProperties. 

\\      / 
\\   / 

I F ield 
0 peration 
A nd 
H anipulation 

OpenFOAM:  The Open Source CFD Toolbox 
Version:    1.3 
Web: http://vonv.openfoan.org 

V  

FoanFile 

{ 
version 
format 

root 
case 
instance 

local 

class 
object 

2.0; 
ascii; 

"constant"; 

dictionary: 
transportProperties; 

// It 

transportModel Newtonian; 

nu 

) 

// 

nu [0 2 -1 0 0 0 0] 1.515le-7; 

************* *** // ***********ft***************************4**********4****4 

The kinematic viscosity, nu, is entered in as: 

/;//        nu [02-1000] 1.515le-7; 

where [0 2-1 0 0 0 0] sets the units based on [Mass Length Time Temperature Quantity Current 
Luminous intensity]. The kinematic viscosity dimensions are Lengths/Time or in SI units: ms/s. 
The value of the kinematic viscosity is set to I/Re where the Reynolds number is 6.6M (L = U = 
1.0). Remember that this value must always be consistent with the Reynolds number. 

Re = UL/nu 

0/ directory (Initial and Boundary Conditions) 

Now we turn our attention to the initial and boundary conditions, which are stored in the 
0/ directory. 

For the icoFoam solver only U andp files are needed in the 0/ directory. 

Open the 0/U file; it should look like the screen capture on the following page. 

In the 0/U file notice: 

Uis a vector field quantity. All (/values must be set in vector format, (XXX). 
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The U dimensions must match the variable by M,L,T\... so velocity is [01-100 0 0] 

The internal Field sets the initial flow field condition for U. For this case the fluid is 
initially at free stream everywhere (Ux=l and Uy,Uz = 0) 

The boundary Field sets velocity boundary conditions for ALL surfaces. All surfaces 
must be included with proper BC's. All surface names must match the 
constant/poly Mesh/boundary surface name exactly. The order of surfaces is not important, but 
the names must match identically. 

The velocity boundary conditions for the five surfaces are as follows: 

The hull is set with 

type    fixed Value; 

value   uniform (0 0 0); 

to apply the no-slip boundary condition to the walls. 

Jhefarfield is set with 

type     zeroGradient; 

to apply a zero velocity gradient at the farfield boundaries. 

The inlet is set with 

type     fixed Value; 

value   uniform (1 0 0); 

for inflow velocity of Ux=l. 

The outlet is set with 

type     zeroGradient; 

to apply a zero velocity gradient at the outlet boundary. 

The symmetry is set with 

type     symmetry Plane; 

All symmetry plane boundary conditions need to have type symmetry Plane. 

Again, the order of the surfaces in the 0/... files doesn't matter, but the names and types 
MUST be consistent with those listed in the constant/polyMesh/boundary file. 
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I \\    / F ield 
|  \\   /  0 peration 
I  \\ /   A nd 
I    \\/    M anipulation 
\*  

OpenFOAN: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web: http://www.OpenFOAM.org I 

I 
•V 

FoamFile 
{ 

version 2.0; 
format ascii; 
class volVectorField; 
location "0": 
object U; 

} 
//  *  *  *  * it     * ******** ******* // 

dimensions [01-10000] 

internalField  uniform (1 0 0); 

boundaryField 
{ 

hull 

type 
value 

arfield 

type 

inlet 

type 
value 

outlet 

type 

symmetry- 

type 

fixedValue; 
uniform (0 0 0); 

zeroCradient; 

fixedValue; 
uniform (10 0); 

zeroCradient; 

symmetryPlane; 

// ************************************************************************* 
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Now open the 0/p file, it should look like the screen capture below. 

In the 0/p file notice: 

p is a scalar field quantity. All p values must be set as a scalar, X, value. 

Thep dimensions must match the variable by M,L,T,... so pressure is [02-2000 0], 
because in icoFoam p is actually the pressure divided by the density, thus the SI units would be 
m7s". 

The internal Field sets the initial condition for/?. For this case (and most others) we do 
not care about the absolute value of the pressure, p, so we just set it to 0 for ease. 

The boundary Field sets pressure boundary conditions for ALL surfaces. All surfaces 
must be included with proper BC's that are consistent with the constant/polyMesh/boundary 
surfaces. 

The pressure boundary conditions for the five surfaces are as follows: 

The hull is set with 

type     zeroGradient; 

for the no slip wall. 

The farfield is set with 

type     zeroGradient; 

to apply a zero pressure gradient at the farfield boundaries. 

The inlet is set with 

type     zeroGradient; 

to apply a zero pressure gradient at the inlet boundary. 

The outlet is set with 

type     fixed Value; 

value   uniform 0.0; 

to set a reference pressure boundary at the outlet. 

Note: At least one boundary in all domains must have a set pressure. 

The symmetry is set with 

type     symmetry Plane; 

All symmetry plane boundary conditions need to have type symmetryPlane. 
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0 
\\     / F ield 
\\   /  0 peration 
\\ /   A nd 
\\/    H anipulation 

\*  

FoamFile 
{ 

version 
format 
class 
location 
object 

} 
// ****** 

dimensions 

internalField 

boundaryField 
{ 

hull 

 *_ C++ _*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web:     http://www.OpenFOAM.org 

•*\ 

2.0; 
ascii; 
volScalarField; 
"0": 
p: 

[02-20000]; 

uniforn 0; 

* * * * * * * // 

type 

:arfield 

type 

inlet 

type 

outlet 

type 
value 

ymmetry 

type 

zeroGradient; 

zeroGradient; 

zeroGradient; 

fixedValue; 
uniform 0.0; 

symmetryPlane; 
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Now open the 0/nuTilda file, it should look like the screen capture below. 

In the 0/nuTllda file notice: 

nit Tilda is a scalar field quantity. All nu Tilda values must be set as a scalar, X, value. 

The nu Tilda dimensions must match the variable by M,L,T,... so viscosity is [0 2 -1 0 0 
0 0], thus the SI units would be m2/s. 

The infernal field sets the initial condition for nu Tilda. For this case it is set to le-8, 
which is ~10% of the kinematic viscosity. 

The boundary Field sets nu Tilda conditions for ALL surfaces. All surfaces must be 
included with proper BC's that are consistent with the constant/poly Mesh/boundary surfaces. 

The nuTilda boundary conditions for the five surfaces are as follows: 

The hull is set with 

type    fixedValue; 

value   uniform 0; 

for the no slip wall. 

Thefarfield is set with 

type     zeroGradient; 

to apply a zero nuTilda gradient at the farfield boundaries. 

The inlet is set with 

type     fixedValue; 

value   uniform le-8; 

to set 10% of the kinematic viscosity at the inlet boundary. 

The outlet is set with 

type     zeroGradient; 

to apply a zero nuTilda gradient at the outlet boundary. 

The symmetry is set with 

type     symmetry Plane; 

All symmetry plane boundary conditions need to have type symmetryPlane. 
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\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

 *_ C++ -*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web:     http://www.OpenFOAH.org 

•A 

-•/ 
FoanFile 
( 

version 
format 
class 
location 
object 

2.0; 
ascii; 
volScalarField; 
"0"; 
nuTilda; 

******* 
) 
// * * * 

dimensions     [02-10000]; 

internalField  uniform le-08; 

aoundaryField 

{ 
hull 

******************* // 

type fixedValue; 
value uniform 0; 

farfield 

type zeroCradient; 

inlet 

type fixedValue; 
value uniform le-08; 

outlet 

type zeroCradient; 

symmetry 

type syiunetryPlane; 

••/ 
************************************************************************* // 
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Now open the 0/nut file, it should look like the screen capture on the next page. 

This file is required by the simpleFoam solver when the Spalart-Allmaras turbulence 
model is used, but its turbulent viscosity input values are not used in the calculations. It is most 
likely a bug in the code. Nonetheless, valid types and path names are required in the nut file. 

In the 0/nut file notice: 

nut is a scalar field quantity. All nut values must be set as a scalar, X, value. 

The nut dimensions must match the variable by M,L,T,... so viscosity is [0 2 -1 0 0 0 0]. 
thus the SI units would be m"/s. 

The intemalField sets the initial condition for nut. For this case it is set to le-6, this 
value is not important to the calculation, so this is simply a general ballpark value. 

The boundary I-icld sets nut conditions for ALL surfaces. All surfaces must be included 
with proper BC's that are consistent with the constant/polyMesh/boundary surfaces. 

The nut boundary conditions for the five surfaces are as follows: 

The hull is set with 

type    zeroGradient; 

to apply a zero nut gradient at the no slip boundary. 

The farfield is set with 

type     zeroGradient; 

to apply a zero nut gradient at the farfield boundaries. 

The inlet is set with 

type    fixedValue; 

value   uniform le-6; 

to set turbulent viscosity at the inlet boundary. 

The outlet is set with 

type     zeroGradient; 

to apply a zero nut gradient at the outlet boundary. 

The symmetry is set with 

type     symmetry Plane; 

All symmetry plane boundary conditions need to have type symmetry Plane. 
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\\    / F ield 
\\   / 0 peration 
\\ / And 
\\/ M anipulation 

 *_ C++ -*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web:     http://www.OpenFOAM.org 

-*\ 

*/ 
oanFile 

version 2.0; 
fornat ascii; 
class volScalarField 
location "0"; 
object nut; 

} 

dimensions     [02-10000]; 

internalField  uniform le-06; 

aoundaryField 
{ 

hull 

type 

farfield 

type 

inlet 

type 
value 

outlet 

type 

symmetry 

type 

***** // 

zeroGradient; 

zeroGradient; 

fixedValue; 
uniform le-06; 

zeroGradient; 

symmetryPlane; 

system/ directory (Solver Settings) 

Now we will look at some of the solver settings and controls that are located in the 
system/ directory. We will focus on the controlDict, fvSolution, fvSchemes, and 
decomposeParDict files. We already used the createPatchDict to merge multiple surfaces. 

Open the system/controlDict dictionary file. It should look like the screen capture below. 
The controlDict file sets all of the run-time parameters and output information. This is also 
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where run-time libraries and functions, such as force outputs over a patch and dynamic mesh 
libraries are specified. 

n. .\ 

v 

// FoamX Case Dictionary. 

FoamFile 
{ 

\\     / F ield 
\\   / 0 peration 
\\    / And 
\\/ M anipulation 

OpenFOAH: The Open Source CFD Toolbox- 
Version:  1.3 
Web:     http://www.openfoan.org 

-'/ 

version 
format 

2.0; 
ascii; 

root 
case 
instance 
local 

"tutorial"; 
"bodyl"; 
"system"; 

c lass 
object 

} 

dictionary; 
controlDict; 

//•••**•• *************************** 

libs ("libnavyF initeVolume.so" "libnavylncompressibleRASModels.so"); 

application simpleFoam; 

startFrom startTime; 

startTime 0; 

stopAt endTime; 

endTime 1500; 

deltaT 1 : 

writeControl timeStep: 

writelnterval 500; 

purgeWrite 0; 

writeFornat ascii; 

// 

writeFrecision 6; 

writeCompression compressed; 

timeFormat     general; 

timePrecision  6; 

graphFormat    raw; 

runTimeHodifiable yes: 

(Screen capture continued on next page... ) 
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functions 
( 

forces_Hull 
{ 

type forces; 

//Library to load 
functionObjectLibs ("libforces.so"); 

//Name of patch to integrate forces over 
patches ( hull ); 

//Reference density for fluid - can be changed later ... 
rholnf 1.0; 

//Origin for moment calculations 
CofR (0 0 0): 

} 

>: 

[7/ *************************•»***+************************** + *•»************** // 

At the top, finite volume and turbulence model libraries are dynamically loaded by 
libs("..");. 

The solver specified in application input does not matter. The solver is specified on the 
command line or in a script file. Thus, this is an insignificant line for our purposes. 

The solver settings are fairly obvious, and more detail is provided on page U-108 of the 
User's Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf). For now we will only 
cover a broad view of the file. 

We know that simpleFoam is a steady solver. Thus the solver will artificially iterate in 
"time", where 1 second is an iteration. Here we see that the solver start from startTime = 0, and 
will iterate in steps of deltaT= 1 until endTime = 1500. The data will be written in ASCII format 
in directories according to writelnterval. Notice that runTimeModifiable is chosen to yes, this 
means that we can make changes to the controlDict in the middle of a run, and they will be 
adjusted on the fly, as opposed to having the settings set in stone for the whole calculation. 

One important note is that to start a calculation from a previous solution the startFrom 
entry must be switched to latestTime, and desired start time information (directory and BC's) 
must be present in the case directory. We will delve into this further later on. 

Now open the system/fvSolution dictionary file. It should look like the screen capture on 
the next page. 

105 



w- -*\ 

I \\     / F ield 
I  \\   /  0 peration 
I  \\ /   A nd 
I   \\/    H anipulation v  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.4 
Web: http://www.openfoan.org 

Fo amFile 
{ 

version 2.0; 
format ascii; 

root it n 

case H •• 

instance 
local 

class dictionary: 
object fv! Solution: 

// *    *   *    -k *   *   *   * u 
solvers 

( 

P PCG 
( 

preconditioner DIC; 
tolerance le-7; 
relTol 0.01; 
ninlter 1; 
naxlter 200; 

} 

li PBiCG 

( 
preconditioner DILU; 
tolerance le-07 
relTol 0.0; 

) 
ninlter 1: 

nuTilda PBiCG 

{ 
preconditioner DILU; 
tolerance le-08 
relTol 0.01; 
ninlter 1: 

I 

SIMPLE 
( 

nNonOrthogonalCorrectors 0; 
pRefCell  0; 
pRefV'alue 0; 

) 
(Screen capture continues on the next page...) 
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relaxationFactors 

{ 
P 0.3 
U 0.4 
nuTilda 0.4 
k 0.4 
onega 0.4 

ThefvSolution file contains linear solver information as well as solver algorithm settings. 

The solvers section contains linear solver settings for pressure, velocity, and turbulent 
viscosity. Note that for this case we are using preconditioned conjugate gradient solvers {PCG 
for symmetric matrices and PBiCG for asymmetric matrices), but we also commonly use multi- 
grid solvers (GAMG, AAMG, etc.). The solver tolerance and relative tolerance settings are not 
important right now. The minlter command sets a minimum number of times the linear solver 
will iterate on a variable. It is usually recommended that the user always set a minimum number 
of iterations > 0 to prevent the solver from prematurely not solving for a variable (we 
recommend minlter =1). 

Below the solvers section are SIMPLE algorithm control settings. These SIMPLE 
settings are not particularly useful to the user at this time, so only a broad view of what each 
setting means is given. Also, note that the PISO algorithm must be used for all transient solvers 
and the SIMPLE algorithm must be used for all steady-state solvers. For this case we have 
nNonOrthogonalCorrectors set to 0, which means that we will not solve the pressure equation 
more than once per iteration. Note for future runs, if the pressure residuals are increasing and the 
solution is diverging/blowing up, nNonOrthogonalCorrectors can be increased to iterate the 
pressure equation more and may lead to successful solution convergence. Notice that we have set 
cell number 0 as our reference cell, where the reference value is 0. This is the reference pressure 
for the incompressible solver. 

Finally, the relaxationFactors section is where under-relaxation factors for each variable 
are specified. Typical pressure values are 0.1-0.4 and typical velocity and turbulence quantity 
values are 0.4-1.0. Higher values correspond to quicker solution advancement, but will be more 
unstable (greater chance of solution divergence). 

Now open the system/fvSchemes dictionary file. It should look like the screen capture 
below. 
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0 
I W     / F ield 
| \\   /  0 peration 
I \\ /   A nd 
| \\/    M anipul.it ion 

-*\ 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.3 
Web:     http://www.openfoan.org 

Fo anFile 
{ 

version 2.0: 
format ascii; 

root > 
case •in. 

instance "system"; 
local ..... 

class dictionary 
object fvSchenes; 

// * * * ********************************** // 

ddtSchenes 

{ 
default steadyState; 

gradSchenes 

default Gauss linear; 

I 

divSchemes 

( 
default 

div(phi.U) 
div(phi.nuTilda) 
div((nuEff*dev(grad(U) .T()))) 

Gauss linearUpwind cellLinited Gauss linear 1.0: 
Gauss upwind; 
Gauss linear; 

laplacianSchenes 

{ 
default Gauss linear corrected; 

interpolationSchenes 

{ 
default linear: 

snGradSchemes 

( 
default 

1 
corrected; 

fluxRequired 

{ 
default 

p: 
} 

no; 
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Many of the fvSchemes settings are not particularly useful to the user at this time, so only 
a broad view of the settings is given here. For more detail on these settings consult page U-l 10 
of the User's Guide. 

The fvSchemes file sections declares the following settings: 

ddt -> time discretization 

gradSchemes -> gradient term discretizations 

divSchemes -> divergence terms discretization 

laplacianSchemes -> Laplacian terms discretization 

interpolationSchemes -> interpolation of values from cell centers to cell face centers 

snGradSchemes -> surface normal gradient evaluation at cell faces 

JluxRequired -> lists fields where flux is generated in the application 

Some fvSchemes notes: 

(1) Because simpleFoam is a steady solver ddtSchemes default is set to steadyState. 

(2) The div(phi,U) term is the convective velocity term, and "Gauss UnearUpwind 
cell Limited Gauss linear 7.0" corresponds to 2nd order upwind. 

(3) The div(phi, nuTilda) term is the convective turbulent viscosity term, and "Gauss 
upwind" corresponds to 1sl order upwind. 

(4) The div((nuEff*dev(grad(U).TQ))) term requires a gradSchemes input, but is placed 
in divSchemes. This is probably a bug. 

For all of the fvSchemes fields a default value can be specified and only exceptions to the 
default setting would need to be specified, or default can be set to none which means that the 
user must enter all values for the appropriate variables themselves. 

Now open the system/decomposeParDict dictionary file. It should look like the screen 
capture on the next page. 

There is a lot in the decomposeParDict that is beyond the scope of this tutorial, but the 
important thing to notice is that the mesh will be split into 12 partitions (numberOfSubdomains 
12;) using the metis method. 

The number of 1 's in the metisCoeffs -> processorWeights section must match the 
number in numberOfSubdomains. 
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3* *\ 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.3 
Web:     http://www.openfoam.org 

v* v 

FoanFile 

{ 
version 2.0; 
format ascii; 

root «• M 

case II II 

instance III! 

local .... 

class dictionary; 
object de< romposeParDict 

// * * * * ********* ***** * * * * // 

nunberOfSubdonains 12; 

nethod net is; 

sinpleCoeffs 
( 

n 
delta 

} 

(2 2 1); 
0.001; 

lierarchicalCoeffs 
( 

n 
delta 
order 

! 

(1 l l); 
0.001; 
xyz; 

netisCoeffs 
I 

processorWeights 
( 

111111111111 
); 

I 

nanualCoeffs 
{ 

dataFile 

distributed no; 

'/ ************************************************************************ * // 
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Next execute the settings from decomposeParDict by entering "decomposePar" on the 
command line. 

Upon completion of the domain decomposition, your directory will have twelve new fdes 
{processorO -> processorl/), which all correspond to the decomposed domain. Your case 
directory should look like the screen capture below. 

[delaneykQamazon bodyl_Tutorial]$ 1 
total 237M 
-rw-r—r— J delaneyk users 237M Apr 8 15 31 bodyl_Box-ASCII.fluent.cas 
drwxr-xr-x 3 delaneyk users 21 Apr 8 15 49 orig_constant 
drwxr-xr— 2 delaneyk users 46 Apr 8 16 41 0 
drwxr-xr-x 3 delaneyk users 14 Apr 8 16 45 forces_Hull 
drwxr-xr-x 3 delaneyk users 67 Apr 8 16 47 constant 
drwxr-xr-x 2 delaneyk users 102 Apr 8 16 50 system 
-rw-r—r— 1 delaneyk users 650 Apr 8 16 51 oFOAM.scp 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 52 processorO 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 52 processorl 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor2 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor3 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor4 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processors 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 S3 processor6 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor? 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor8 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 53 processor9 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 S3 processorlO 
drwxr-xr-x 4 delaneyk users 29 Apr 8 16 S3 processorll 
[delaneykOa nazon bodyl. .Tutorial]$ 

Running the Case 

We are now ready to run our case. To execute this case on a cluster a script file is needed. 
For example purposes the script fde oFOAM.scp is shown below. 

Notice that the 12 partition mesh will be run on 3 nodes with 4 processors per node. The 
application simple Foam is also specified in this file. 

-It is now time to run the job, so in this case we type: 

>>qsub oFOAM.scp 

into the command line. A file named log will contain all of the run information that would 
normally be output in a screen dump. 

Remember that at the bottom of our controlDict file, we specified a function named 
forcesHull of type forces. This file calculates forces over the patch specified by patches (hull 
in our case), and places them in a directory named forcesHull under a time file name that 
corresponds to startTime. 

Now let the file run out until its endTime of 1500 iterations. 
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gPBS -j oe 
#PBS -o ./amazon.out 
#PBS -e ./amazon.err 
#PBS -S /bin/csh 
#PBS -N SA_bl 
#PBS -1 nodes=3:ppn=4 
#PBS -1 walltine=42:00:00 
#PBS -V 
echo "cd to the directory" 
cd 1>PBS_0_W0RKDIR 

setenv OPENFOAM_NP 12 

echo "define parameters in exec statement' 

set APPLICATION="simpleFoam" 
set R0OT="." 
set CASE="Body_l_Tutorial" 

echo "The current shell is SSHELL" 
SOPENFOAM_NP" 
^APPLICATION SROOT SCASE' 
*FBS_0_WORKDIR" 

echo "Number of processors 
echo "Executing 
echo "Working directory 
echo "The shell limits are 
limit 
echo "Starting executable...." 

mpirun -machinefile $PBS_NODEFILE -np $OPENFOAM_NP ^APPLICATION -parallel > ./log 

After the case has completed, by running 1500 iterations open up the forces_Hull/l file. 
Let's just say for tutorial purposes that the forces have not converged to our satisfaction, and we 
want to run the case out further for an additional 2500 iterations. 

To restart the case make the following changes in the system/control Diet fde: 

(1) Change:  startFrom        startTime;      •>       startFrom        latestTime; 

(2) Change:   endTime        1500; ->       endTime 4000; 

-Now restart the calculation with 

»qsub oFOAM.scp 

Notice that the log file will be written over (so make a copy in the future if you wish to 
keep the original log file). Also notice that forces are now being output under forces/1501 file, 
and the original forces are still kept under forces/1. 

Let the case run out to completion after 4000 iterations. 

Now open the log file. Some observations: 

You can see that the solver started from time equal to 1500 and iterated until 4000. 

For each iteration the momentum equation (Ux, Uy, and Uz) is solved first, then the 
continuity equation (p), and finally the turbulent quantity (nuTilda). 
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For each variable linear solver we can see the initial residual, final residual, and the 
number of iterations it took to drop from the initial to the final residual. We set all of these 
tolerances and iteration criteria in the system/fvSolution dictionary file. 

There are also continuity error reports. 

The best way to typically monitor the solution is to make sure that the velocity magnitude 
stays at a reasonable number, and make sure that initial pressure residuals are decreasing or are 
holding steady at an acceptable value. 

The last line of the time iteration produces execution and clock time information. This is 
useful in gauging the efficiency of your solution. 

Post-Processing 

Notice that there are many time directories in your processor directories. Each of these 
directories contains output information for their respective time step. 

To reconstruct the data from the decomposed processors use the command 

>> reconstructPar -latestTime 

The -latestTime means only reconstruct the last time in the processor* files. The 
command -time timett will reconstruct for a specific time (timett) only. If only reconstructPar is 
specified, then all time directories in the processor* files will be reconstructed. 

To look at the post-processed results simply type the following commands, depending on 
the post-processing tool of choice: 

»foamToEnSight -latestTime -> to look at the results in EnSight 

» foamToVTK -latestTime -> to look at the results in Para View 

where the command -latestTime is used to only look at the results from the last output time step. 
To look at the results for all time steps simply leave off the -latestTime command, and to look at 
the results for a specific time (i.e. 0.005) use -time 0.005. 

To look at the results in ParaFoam, no additional commands are needed, simply open 
ParaFoam in the case directory. 

Your results should look like the axial velocity ((7.x) and pressure (Press) contours below. 
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Appendix E: ransFSNavyFoam Wigley Hull Tutorial 

This tutorial involves using the turbulent, transient, incompressible, multi-phase solver 
for the Wigley hull. Although this is a transient solver, this case will NOT be run time accurate. 
Only half the body is solved, as symmetry is assumed. First, we will go over pre-processing and 
case setup, then we will run the test case, and finally we will look at some post-processed results. 

For more detailed information on the OpenFOAM code and settings consult the User's 
Guide: http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf. 

Pre-Processing and Case Setup 

Your initial directory should look like the screen capture below. 
total 4.OK 
drwxr-xr-x 3 delaneyk users 128 Jul 13 14:50 constant 
drwxr-xr-x 2 delaneyk users 100 Jul 13 14:50 system 
drwxr-xr-x 2 delaneyk users 72 Jul 13 14:50 0 
-rw-r--r— 1 delaneyk users 646 Jul 13 14:50 oFOAM.scp 

constant/ directory 

In the previous tutorials the mesh needed to be imported into OpenFOAM from a 3rd 

party mesh generator. However, for this case the mesh has already been imported, so you will 
notice the polymesh/ folder is already present in the constant/ directory. Open up your 
constant/polyMesh/boundary file, it should look like the following screen capture. Notice that 
the hull surface is of type wall (viscous surfaces must always be of type wall), the centerplane is 
of type symmetry Plane (symmetry planes must always be of type symmetry Plane), and the rest 
of the surfaces are of type patch. 
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n. C++  .\ 

\\     / F ield 
\\   /  0 peration 

\\ /   And 

I OpenFOAM: The Open Source CFD Toolbox 
I Version:  1.5.x 
I Web: ht tp://www.OpenFOAM.org 

V — 
FoanFile 

\\/    M amputation  I 

// 
7 

version 2.0; 
fornat ascii; 
class polyBoundaryMesh; 
location "constant/polyHesh" 
object boundary; 

hull 

type 
nFaces 
startFace 

} 
centerplane 

( 
type 
nFaces 
startFace 

) 
bottom 

( 
type 
nFaces 
startFace 

) 
farfield 

{ 
type 
nFaces 
startFace 

} 
top 

( 
type 
nFaces 
startFace 

1 
inlet 

( 

I 

type 
nFaces 
startFace 

outlet 

type 
nFaces 
startFace 

) 

wall; 
3074; 
762555: 

symmetry-Plane; 
5858; 
765629; 

patch; 
3364; 
771487; 

patch; 
8932; 
774851; 

patch; 
3364; 
783783; 

patch; 
2233; 
787147; 

patch: 
2233; 
789380; 

 V 

ft 

i************ * ********************************* ft************************* ft 

Now run the checkMesh command for two reasons: 

1.   to make sure the mesh was imported correctly 
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2.   to asses the quality of the mesh for the OpenFOAM solver 

Your checkMesh output should look like the screen captures on the next pages. 

\\ 
\\  / 
\\ / 
W 

\*  
Exec 
Date 
Tine 
Host 
PID 

Case 
nProcs 

Create time 

[delaneykQanazon wigley_tutorial]$ checkMesh 

-•\ 

F ield I OpenFOAM: The Open Source CFD Toolbox 
0 peration I Version: 1.5-dev 
A nd I Revision: exported 
M anipulation I Web: http://www.OpenFOAM.org 

-'/ 
checkMesh 
Jun 21 2010 
10:56:06 
amazon.dt.navy.nil 
29416 
/san/hone/delaneyk/NavyF0AM-l.S-dev-rev995/delaneyk-1.5-dev/run/wigley/tutorial/»(igley_tutorial 
1 

*  +  *  * U 

~> FOAM Warning : 
From function dlLibraryTable::open(const fileNameA functlonLibName) 
in file db/dlLibraryTable/dlLibraryTable.C at line 86 
could not load /san/hone/delaneyk/NavyFOAM-1.S-dev-rev99S/NavyF0AM/lib/linux64GccDPOpt/libnavyFiniteV 

olume.so: undefined symbol: _ZN4Foam6upwindIdE8typeNaneE 
> FOAM Warning : 

From function dlLibraryTable::open(const fileName* functionlibNane) 
in file db/dlLibraryTable/dlLibraryTable.C at line 86 
could not load /san/home/delaneyk/NavyFOAM-1.5-dev-rev99S/NavyF0AM/lib/linux64CccDP0pt/libnavyIncompr 

essibleRASModels.so: undefined symbol: _ZN4Foaml4incompressible8RASModelllprintCoeffsEv 
Create polyMesh for time = constant 

Time -  constant 

Mesh stats 
points: 273780 
faces: 791613 
internal faces: 762555 
cells: 259028 
boundary patches: 7 
point zones: 0 
face zones: 0 
cell zones: 0 

Number of cells of each type: 
hexahedra: 
prisms: 
wedges: 
pyramids: 
tet wedges: 
tetrahedra: 
polyhedra: 

259028 
0 
0 
0 
0 
0 
0 

Checking topology... 
Boundary definition OK. 
Point usage OK. 
Upper triangular ordering OK. 
Face vertices OK. 
Number of regions: 1 (OK). 

Checking patch topology for multiply connected surfaces ... 
Patch Faces   Points  Surface topology- 
hull 3074    3186    ok (non-closed singly connected) 
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centerplane 58 S8 6105 
bottom 3364 3510 
farfield 8932 9126 
top 3364 3510 
inlet 2233 2340 
outlet 2233 2340 

ok (non-closed singly connected) 
ok (non-closed singly connected) 
ok (non-closed singly connected) 
ok (non-closed singly connected) 
ok (non-closed singly connected) 
ok (non-closed singly connected) 

Checking geometry... 
This is a 3-D mesh 
Overall domain bounding box (-4 -9.40395e-38 -4) (12 8 1.2) 
Mesh (non-empty) directions (1 1 1) 
Mesh (non-empty, non-wedge) dimensions 3 
Boundary openness (-2.25653e-16 -6.20107e-16 -3.37491e-16) Threshold = le-06 OK. 
Max cell openness = 3.23887e-16 OK. 

Max aspect ratio = 750.787 OK. 
Minimum face area = 7.99769e-06. Maximum face area = 1.44004.  Face area magnitudes OK. 
Min volume = 3.21742e-08. Max volume = 1.44.  Total volume = 664.872.  Cell volumes OK. 
Mesh non-orthogonality Max: 78.8601 average: 12.7201 Threshold = 70 
Number of severely non-orthogonal faces: 18. 

Non-orthogonality check OK. 
<<Writing 18 non-orthogonal faces to set nonOrthoFaces 

Face pyramids OK. 
Max skewness = 1.46173 OK. 

Mesh OK. 

End 

You will notice that there are 18 "severely non-orthogonal faces." As has been mentioned 
in previous tutorials, OpenFOAM's checkMesh is very harsh. Sometimes it is not possible to 
create a mesh without any high aspect ratio, non-orthogonal, or skewed cells. In fact, most 
meshes created will contain bad cells, and run fine. However, at some point (which is not 
quantitatively clear) the mesh will be so poor it either won't run, or it will take a long time to 
run. There aren't exact guidelines on OpenFOAM mesh quality; it simply takes experience 
running various meshes. 

Another good initial step is to export the geometry into a visual package (EnSight, 
ParaView, etc.) and make sure that all surfaces are grouped and labeled correctly. To export the 
geometry, use foamToEnsight for EnSight, foamToVTK for ParaView, and no additional 
command is needed for ParaFoam. So now take a minute or two and inspect your geometry in 
your package of choice. Your geometry should look like the pictures on the next page, with the 
appropriate surface labels. This mesh is meant for instructional purposes only as you will notice 
that the mesh is very coarse. 
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Entire Domain: 

The constant/RASProperties file is the same as in the previous tutorials and will not be 
covered here. 

Open the constant/transportProperties file, it should look like the screen capture below. 
No editing is necessary. However, notice that the multi-phase solver requires density (rho) and 
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kinematic viscosity (nu) for both the water (phase 1) and the air (phase 2). Additionally the 
surface tension (sigma) is input at the bottom. The surface tension could probably be neglected 
for this case of a surface ship (sigma - 0.0), but it must always be included at the bottom of the 
transportProperties file. 

0* »N 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
\\/ M anipulation 

OpenFOAH: The Open Source CFD Toolbox 
Version:  1.3 
Web: http://vnnw.openfoam.org 

--*/ 

oanFile 

version 
format 

2.0; 
ascii: 

root 
case 
instance 
local 

"wigley": 

class 
object 

dictionary: 
transportProperties; 

/.' *   *   *   * // 

transportModel Newtonian; 

phasel 
I 

transportModel Newtonian; 
rho rho [1 -3 0 0 0 0 01 1000: 
nu nu [0 2 -1 0 0 0 0]  le-06: 

phase2 
I 

transportModel Newtonian: 
rho rho [1 -3 0 0 0 0 0] 1; 
nu nu [0 2 -1 0 0 0 0]  1.48e-05; 

•- IKH.I signa   [10-20000]  0.07; 

********* ***************************************** ft 

The multi-phase solver also requires a constant/environmentalProperties file, which has 
not been required in the previous tutorials. This file contains information on the gravity vector as 
can be seen on the next screen capture. An important note for free surface flow is to make sure 
that the gravity and velocity (from the 0/U file) coincide with the desired Froude number 
according to the definition: 

Fr = 
V 

For this tutorial the Wigley Hull will be run at a Froude number of 0.289, corresponding 
to a Reynolds number of 905,000. 
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0.—-. 
\\     / F ield 
\\   /  0 peration 

\\ /   And 
\\/    H anipulation 

\.  

FoarFile 

{ 

 .\ 

OpenFOAM: The Open Source CFD Toolbox 
Version: 1.3 
Web:     http://www.openfoan.org 

8 

version 
fornat 

root 
case 
instance 
local 

class 
object 

 ./ 

2.0; 
ascii: 

"wigley": 

dictionary; 
env ironnent alProperties; 

g [0 1 -2 0 0 0 0] (0 0 -9.81); 

ll 

'.' 

0/ directory!Initiul and Boundary Conditions) 

Now we turn our attention to the initial and boundary conditions, which are stored in the 
0/ directory. Again, many of the basic concepts stored in the 0/ directory have been covered in 
previous tutorials, thus only new concepts will be covered here. However, it is worth repeating 
that ALL surface names in the 0/... files must match the names from the 
constant/polyMesh/boundary file. 

For the ransInterNavyFoam solver with the SST k-omega turbulence model only U, k, 
omega, pd, and gamma files are needed in the 0/ directory. 

Open the 0/U file; it should look like the screen capture on the next page. The hull is set 
to a no-slip boundary condition, the inlet, farfield, and bottom boundaries are set to slip 
boundary conditions to simulate the coordinate system fixed to the hull as would be the case in 
tow tank tests. 

121 



C++ -x 0* 
\\     / F ield 
\\   /  0 peration 

\\ /   A nd 
\\/    M anipulation 

\. v 

FoanFile 

{ 
version 
format 
class 
location 
object 

} 
//****** 

dimensions 

internalField 

boundaryField 

{ 

OpenFOAH: The Open Source CFD Toolbox 
Version: 1.5-dev 
Web:     http://www.OpenFOAM.org 

2.0; 
ascii; 
volVectorField; 
"0"; 

U: 

[Oi-ioooo]; 

uniform (0.905 0 0): 

******* * // 

hull 

{ 
type 
value 

enterplane 

type 

bottom 

type 
value 

arfield 

type 
value 

op 

type 

nlet 

type 
value 

outlet 

type 

fixedValue; 
uniform (0 0 0); 

symmetryPlane; 

fixedValue; 

uniform (0.905 0 0); 

fixedValue; 
uniform (0.905 0 0); 

zeroGradient; 

fixedValue: 
uniform (0.905 0 0); 

zeroGradient; 

// A************************************************* *****+*+******+**+*•** * // 

Both the 0/k and 0/omega files are set up similar to the previous tutorials, and should 
look like the following screen captures. 
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\\     / F ield 
\\   / 0 peration 
\\     / A nd 
\\/ M anipulation 

 •- C++ -*  

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.5-dev 
Web:     http://www.OpenFOAM.org 

-'\ 

\*  
FoanFile 
{ 

version 
format 
class 
location 
object 

) 

dimensions 

internalField 

boundaryField 

hull 

type 

enterplane 

type 

bottom 

type 
value 

arfield 

type 
value 

2.0; 
ascii; 
volScalarField; 
"O"; 
onega; 

[00-10000]; 

uniform 400: 

zeroCradient: 

op 

type 
value 

inlet 

type 
value 

outlet 

type 

symmetryPlane; 

fixedValue; 
uniform 400; 

fixedValue: 
uniform 400: 

fixedValue; 
uniform 400; 

fixedValue; 
uniform 400; 

zeroCradient; 

// 

// ********* 4****************4 ******** ************* ********* a 
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The multi-phase solver requires a 0/gamma file which represents the volume fraction 
(gamma = 0 = air and gamma = 1 = water). The solver is using the Volume of Fluid (VOF) 
method to solve for both the air and water. 

Notice that all of the bottom and outlet boundaries are set to zero gradient. The top is set 
to inletOutlet, which switches between a fixed value and zero gradient condition depending on 
the direction of flow across the boundary. The inlet and farfield are set to the calmWater 
boundary condition, which keeps the air-water interface at a constant height along the boundary. 
The calmWater condition is especially important in avoiding artificial waves at the inlet and side 
of the domain during mesh motion calculations. The centerplane is set to symmetry Plane. 
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\*  
FoanFile 

\\     / F ield 
\\   / 0 peration 

\\ / A nd 
\\/ H anipulation 

 *- C++ --  

OpenFOAM: The Open Source CFD Toolbox 
Version: l.S-dev 
Web:     http://www.OpenFOAM.org 

-*\ 

version 
fornat 
class 
location 
object 

2.0: 
ascii; 
volScalarField; 
"0"; 
ganma; 

} 
If     ********************* ********** //' 

dimensions 

internalField 

boundaryField 

hull 

type 

centerplane 

type 

bottom 

type 

arfield 

type 
valueAbove 
valueBelow 
elevation 
axis 
value 

[0 0 0 0 0 0 0]; 

uniform 0; 

top 

( 
type 
inletValue 
value 

zeroCradient; 

symmetryPlane; 

zeroCradient: 

calmWater; 
0: 
1 
() 
z 
uniform 0: 

inletOutlet ; 
uniform 0; 
uniform 0; 

(screen output continues on the next page... ) 
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inlet 
{ 

type 
valueAbove 
valueBelow 
elevation 
axis 
value 

} 

outlet 
{ 

type 
1 

calnWater; 
0: 
1 
0 
z 
uniform 0; 

zeroGradient; 

w // 

Now open the 0/pd file and notice that for the multi-phase solver pressure is in terms of 
the variable pd, as opposed to p for the single phase solver. For the single phase solver the 
pressure (p) is a relative pressure, whereas a more precise (pd) pressure is solved for in 
ransFSFoam. The top and outlet have the pressure set to 0 and the rest are at zero gradient and 
symmetry plane. 
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\\     / F ield 
\\   / 0 peration 

\\ / And 
\\/ M anipulation 

 *. C++ -*  

OpenFOAM: The Open Source CFD Toolbox 
Version: l.S-dev 
Neb:     http://wwvi.OpenFOAM.org 

-V 
FoanFile 

( 
version 2.0; 
format ascii; 
class volScalarField; 
location "0"; 
object pd: 

} 
/ / **************** 

dimensions      [1 -1-20000]: 

internalField  uniform 0; 

boundaryField 

{ 
hull 
{ 

type 

enterplane 

type 

ottor 

type 

arfield 

type 

op 

type 
va lue 

nlet 

type 

outlet 

type fixedValue: 
value uniform 0; 

****** *  *  *  *  * 
I! 

zeroCradient; 

symnetryPlane: 

zeroCradient; 

zeroCradient; 

fixedValue: 
uniform 0; 

zeroCradient; 

// *************i ************************************************** It 

System/ Folder (Solver Settings) 

Now we will look at some of the solver settings and controls that are located in the 
system/ directory, which contains: controlDict, setFieldsDict, fvSolution, fvSchemes, and 
decompose Tar Diet files. 
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The system/decomposeParDict dictionary file was covered extensively in the 
simpleFoam tutorial, thus will not be discussed here. 

Open the system/controlDict dictionary file. It should look like the screen capture below. 

The solver settings are fairly obvious, and more detail is provided on page U-108 of the 
User's Guide (http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf). For now we will only 
cover a broad view of the file. 

The solver specified in application input does not matter. The solver is specified on the 
command line or in a script file. Thus, this is an insignificant line for our purposes. 

The ransFSFoam solver is a transient solver, thus it requires maxCo and maxDeltaT 
inputs that specify the maximum possible Courant (CFL) number and time step, respectively. 
When the adjustableTimeStep is set to yes the time step specified by deltaT is ignored and the 
time step size is chosen by the maximum Courant number set by maxCo. 

The maxCo (CFL) command is very important to solution stability. There is no single 
value that is used for all cases, and in most cases the user will start out with a low CFL number 
and then ramp it up once the initial solution transients die out. This is a parameter that the user 
will have to gain experience over time to learn the best solution strategy. For now we will start 
with CFL =5.0 and leave it as such throughout the solution, but it is not unusual to start cases 
out with CFL as low as 1 and ramp it up into the 100's. The controlDict is read continuously 
during the calculation, thus the CFL can be changed on the run without having to stop the run. 

Near the bottom, finite volume and turbulence model libraries are dynamically loaded by 
libs("..");. 

At the bottom the hullForce library is loaded, which calculates forces and moment over 
the hull surface. The moments are taken about the point specified by COR. 
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v 

\\     / F ield 
\\   / 0 peration 
\\ / A nd 
W M anipulation 

OpenFOAH: The Open Source CFD Toolbox 
Version:  1.4 
Web:     http://wvm.openfoan.org 

aiiFile 

version 2.0; 
format ascii; 

root 
case "wigley": 
instance ..... 
local ..... 

class dictionary: 
object controlDict; 

application 

startFrom 

startTine 

stopAt 

endTine 

deltaT 

writeControl 

itelnterval 

purgeWrite 

writeFornat 

writePrecision 

wr i teConpression 

t ineFornat 

tinePrecision 

runTineModiflable 

adjustTineStep 

naxCo 

-V 

// 

interFoan: 

startTine; 

0; 

endTine; 

50; 

0.01; 

runTine; 

10: 

0; 

ascii: 

(>: 

uncompressed; 

general; 

<.: 

yes: 

yes; 

5.0: 

libs ("libnavyFiniteV'olune.so" "libnavylnconpressibleRASModels.so" "libnyDynanicFvHesh.so"); 

naxOeltaT S.e-2; 

(screen output continues on the next page... ) 
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functions 

( 
hullForce 

( 
type hull Force: 

// Where to load it from (if not already in solver) 
functionObjectLibs ("HbhullForce.so"): 

patches 

CofR 

( hull ): 

(0.5 0 0); 

>i 

3/ * ****** * ii 

Now open the system/fvSolution dictionary file. It should look like the screen capture on 
the next pages. 

ThefvSolution file contains linear solver information as well as solver algorithm settings. 

Notice that we are using multi-grid (GAMG) linear solvers for all of the pressure terms 
instead of the conjugate gradient (PCG) solvers from the previous tutorials. The linear solver 
settings and criteria are explained in further detail in the User's Guide. The important part of the 
solvers is noticing the tolerance and relative tolerance (relTol) which determine when the solver 
will stop iterating. 

pCorr is an initial pressure calculation that is done before the first iteration only for this 
case (as can be seen later on in the log file). If the mesh were moving there would be a pCorr 
loop for each iteration. 

The transient solver requires the PISO algorithm as opposed to the SIMPLE algorithm 
that is required for steady solvers. Most of the PISO settings (correctors) specify the number of 
iterations and subiterations for parameters like velocity, pressure, and gamma. Outer correctors 
loop through all linear solvers (U, k, omega, /></. and gamma), non-orthogonal correctors loop 
through the pressure equation, and gamma correctors and subcycles loop through the volume 
fraction. 

For future purposes, the user is encouraged to change the various PISO settings and look 
at the log file to see how these settings effect the solution iterations. Solutions on high quality 
meshes will require less correctors and subcycles, while for poor meshes it may be necessary to 
have more correctors to achieve a solution. The higher the number of correctors and cycles the 
solution will be more stable; however, iteration time will increase rapidly. There is no "correct" 
answer for each PISO parameter. 

The cGamma parameter specifies the sharpness of the interface (0 = less sharp and 1 = 
most sharp). CoGamma refers to the gamma solution advancement. For now the user should 
simply leave cGamma and CoGamma at 0 and 0.5 for all cases. 

For the time being, make sure that your settings look like the screen. More detail on the 
PISO      settings       is      provided      on      page      U-117      of      the       User's      Guide 
(http://foam.sourceforBe.net/doc/Guides-a4/UserGuide.pdf). 
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\\     / F ield 
\\   /  0 peration 

W 
A nd 
M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version: 1.3 
Web: http://wwtt.openfoan.org 

I 

I 
-•/ 

// FoanX Case Dictionary. 

FoanFile 

( 
version 
fornat 

root 
case 
instance 
local 

class 
object 

2.0; 
ascn: 

"wigley" 

dictionary: 
fvSolution: 

tl * * * 

solvers 

( 

*  *  •  » •  •  *  • *••••* «  *  •  « // 

pcorr CAMC 

{ 
tolerance 
relTol 
ninlter 
naxlter 

smoother 
nPreSweeps 
nPostSweeps 
nBottonSweeps 

le-4: 
0: 
1; 
25: 

DICCaussSeidel; 
0: 
2 
2 

cacheAggloneration false: 
nCellsInCoarsestLevel 10; 
agglonerator    faceAreaFair: 
nergeLevels    1; 

pd GANG 

{ 
tolerance 
relTol 
ninlter 
naxlter 

snoother 
nPreSweeps 
nPostSweeps 
nFinestSweeps 

le-7: 
0.01; 

i; 
25: 

DICCaussSeidel: 
2: 
Zi 
2i 

cacheAggloneration false: 
nCellsInCoarsestLevel 10; 
agglonerator    faceAreaFair: 

)\ 
nergeLevels l: 

(screen output continues on the next page...) 
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pdFinal GAMC 

{ 
tolerance 
relTol 
ninlter 
naxlter 

le-7; 
0.01; 

1: 
100; 

nV'cycles 

snoother 
nPreSweeps 
nPostSweeps 
nFinestSweeps 

DICCaussSeidel: 
2; 
2 
2 

cacheAggloneration false: 
nCellsInCoarsestLevel 10; 
agglonerator    faceAreaPair; 
nergeLevels     1; 

I: 

li PBiCC 

{ 
preconditioner 
tolerance 
relTol 
ninlter 

1: 
ganna PBiCC 

{ 
preconditioner 
tolerance 
relTol 
ninlter 

.1: 
k PBiCC 

DI LU; 
le-09 
0.001 
1: 

DILU: 
le-08 
0; 
1: 

I 
preconditi oner 
tolerance 
relTol 
ninlter 

DILU: 
le-07 
0.01; 
1; 

). 
onega PBiCC 

preconditioner 
tolerance 
relTol 
ninlter 

DILU: 
le-07 
0.01: 
1; 

1: 

PI SO 

{ 
nonentunPredictor yes; 
nOuterCorrectors 2: 
nCorrectors 1; 
nNonOrthogonalCorrectors 0; 
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nCannaCorr 2: 
nCannaSubCycles i: 
cCaniia 0: 
CoCamia 0.5 

) 

relaxa t ionFac tors 

I 
pd 0.2 
U 0.7 
k 0.5 
onega 0.5 
ganna 0.5 

0 /' 

Now open the system/fvSchemes dictionary file. The file is the same as tutorials cases 
except for additional divergence and flux terms. Under the divSchemes section gamma (phi and 
phirb) divergence terms are needed for the VOF solution. Also, pd, gamma, and pcorr flux terms 
are required under the fluxRequired section. Your file should look like the screen capture on the 
next page. 
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/ F ield 
0 peration 
A nd 
M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.3 
Web: http://www.openfoan.org 

FoanFile 
{ 

version 
fiirm.it 

root 
case 
instance 
local 

class 
object 

2.0; 
ascii: 

"wigley" 

dictionary; 
fvSchenes; 

ddtSchenes 

default        Euler; 

gradSchemes 

default 

divSchenes 

div(rho'phi.U) 

div(phi.ganna) 
divfphirb,gamma) 

div(phi.k) 
div(phi,omega) 

laplacianSchemes 

default 

interpolationSchemes 

default 

snGradSchemes 

default 

U 

Gauss 1inear; 

Gauss linearl'pwind cellLimited Gauss linear 1.0: 

Gauss vanLeerOl; 
Gauss interfaceConpression; 

Gauss upwind; 
Gauss upwind: 

Gauss linear corrected; 

linear; 

corrected; 
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fluxRequired 

( 
default 
pd: 
pcorr; 
ganna; 

w • • * * // 
Now open the system/setFieldsDict dictionary file. This dictionary can be used to initially 

set flow field parameters over the entire domain. For now we will use it to set the domain 
volume fraction up appropriately. The field is initially set to air (defaultFieldValues setting 
gamma 0). The regions section uses boxToCell to set every cell within a box defined by the 
minimum and maximum rectangular points (which can extend outside the domain) to water 
(gamma 1). 

0 n 

v- 
FoanFile 

{ 

\\  / 
\\ / 

/ F ield 
0 peration 
A nd 
M anipulation 

OpenFOAM: The Open Source CFD Toolbox 
Version:  1.3 
Web: http://vmw.openfoan.org 

version 
fiirm.it 

root 
case 
instance 
local 

class 
object 

2.0; 
ascii; 

"systen": 

dictionary; 
setFieldsDict; 

// // 

defaultFieldValues 

volScalarFieldValue ganna 0 

): 

regions 

( 
boxToCell 

( 

box (-10 0 -20) (20 20 0); 

fieldValues 
( 

volScalarFieldValue ganna 1 

): 

II • *««******«-****************4*-ft******<*******<***** + **«**4**«*«************* It 
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The sell hi ds command will alter the O/gamma file, so it is wise to make a copy of your 
original file. This can be done in Linux by: 

> > cp -r O/gamma 0/Original_gamma 

Now we are ready to set the initial flow field with the set Fields command which executes 
the setFieldsDict dictionary. Enter setFields into the command line. Your output should look 
like the screen capture below. 

[delaneykQanazon wigley_tutorial]$ setFields 

OpenFOAM 

  \ 

1 w / F ield The Open Source CFD Toolbox          1 

1   \\ /  0 peration Version: 1.5-dev                          1 

1    \\ /   A nd Revision exported                         1 
I   W    H ampulation Neb: http://www.0penF0AM.org             | 
v *  __ _ •/ 

Exec : setFields 
Date : Jun 21 2010 
Tine : 11:05:12 
Host : anazon.dt.navy.nil 
PID : 31380 
Case : /san/hone/delaneyk/l JavyFOAM-l 5-dev-rev995/delaneyk-l.S-dev7run/wigley/tutorial/wigley_tutorial 
nProcs : 1 

// * ' **«*»***•** »*****•******« + **** // 

Create tine 

-> FOAM Warning : 
Fron function dlLibraryTable::open(const fileNane* functlonLibNane) 
in file db/dlLibraryTable/dlLibraryTable.C at line 86 
could not load /san/hone/delaneyk/NavyFOAM-1.S-dev-rev995/NavyF0AM/lib/linux64CccDPOpt/libnavylnconpr 

essibleRASModels.so: undefined symbol: _ZN4Foanl4inconpressible8RASModelllprintCoeffsEv 
Create nesh for tine = 0 

Reading setFieldsDict 

Setting field default values 
Setting volScalarField ganna 

Setting field region values 
Adding cells with center within box (-10 0 -20) (20 20 0) 
Setting volScalarField ganna 

End 
[delaneyk&anazon wigley_tutorial]$ 

It is wise to make sure that the setFields command did what it was supposed to do by 
viewing the results. Previous tutorials go over how to get OpenFOAM results into EnSight 
(foamToEnSighi) and ParaView (foamToVTK). 

Once the case is imported into your post-processor of choice, your domain should look 
like the picture below. You should have gamma equal to zero above z=0 and gamma equal to 1 
below z=0. 
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Running the Case 

Now the problem is set up correctly and ready to run. The final step is to decompose the 
domain by the decomposePar command. 

You should now have 8 processor files (processorO -> processor?) located in your case 
directory. 

The final step is to submit your script (oFoant.scp in this example), and then the job will 
run. 

>>qsub oFOAM.scp 

Remember that at the bottom of our controlDict file, we specified a function named 
hullForces. This file calculates forces over the patch specified by patches {hull in our case), and 
places them in a directory named hullForce under a time file name that corresponds to 
startTime. 

Now let the file run out until its endTime of 50 seconds. 

You can open or tail the log file to monitor your solution residuals and look at your linear 
solution strategy that was set under the PISO section in system/fvSolution. Monitoring the 
pressure residuals and the velocity magnitude value from iteration to iteration will give you a 
good idea of your solution strategy. Rapidly increasing pressure residuals or velocity magnitudes 
over consecutive iterations usually mean the solution is diverging. 

Post-Processing 

Notice that there are many time directories in your processor directories. Each of these 
directories contains output information for their respective time step. 

To reconstruct the data from the decomposed processors use the command 

>> reconstnictPar -latest Time 
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The -latestTime means only reconstruct the last time in the processor* files. The 
command -time time# will reconstruct for a specific time (time#) only. If only reconstructPar is 
specified, then all time directories in the processor* files will be reconstructed. 

To look at the post-processed results simply type the following commands, depending on 
the post-processing tool of choice: 

»foamToEnSight -latestTime -> to look at the results in EnSight 

» foamToVTK -latestTime -> to look at the results in ParaView 

where the command -latestTime is used to only look at the results from the last output time step. 
To look at the results for all time steps simply leave off the -latestTime command, and to look at 
the results for a specific time (ie 0.005) use -time 0.005. 

To look at the results in ParaFoam, no additional commands are needed, simply open 
ParaFoam in the case directory. 

Your results should look like the following figures. 

Bow Wave: 

138 



Free Surface Contour Plot: 
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